Whole life solution
In construction, a whole-life solution is an activity or installation which, once it has been undertaken, does not need to be repeated for the life of the building. It usually applies to certain materials and components that are of such high durability that they can be installed and left in place with the confidence that they will not need replacing.
A typical example is offered by the brick walls of a building: these have been known to last not just for the life of a building but for centuries beyond the initial construction. Although they may need repointing (i.e. replacing the mortar joints) at certain intervals, the bricks making up the wall will endure and therefore brick walls constitute a whole-life solution if not tampered with.
Other components that can be considered whole-life solutions include:
- Concrete foundations;
- Concrete floors;
- Balconies:
- Chimney stacks;
- Internal components such as door frames and staircases, and some floor and wall tiles (stone and ceramic).
Whole-life solutions such as those listed above tend to offer excellent value for money as there needs to be no reinstatement or recurring costs. But they can also have good sustainability credentials as being whole-life options they do not necessitate replacement by new materials, nor the labour required to do so nor the requirement for new site deliveries (energy consumption, exhaust emissions, traffic congestion etc). This means a building that is made up of such components may have a lower carbon footprint.
Components that are not generally considered to be whole-life solutions include:
- Mortar joints;
- Windows and glazing;
- Guttering;
- Roof coverings (slates, asphalt, single-ply membranes etc);
- Pipework.
- Electrical wiring.
[edit] Whole-life options and cost models
A client may be advised impartially by a commercial enterprise such as a firm of quantity surveyors on whole-life options for construction components and services. This can help the client achieve best value solutions (as well as reductions in carbon emissions) that take in not only components but also overall energy requirements and future running costs.
Clients may achieve value for money, optimise costs and improve processes by adopting an appropriate whole-life cost model for a project. Whole-life cost models generate the total cost implications of a project by combining the capital costs of construction with maintenance, operational, occupational and sometimes disposal costs.
[edit] Related articles on Designing Buildings Wiki
- Accounting.
- Additionality.
- Cost.
- Cost consultant.
- Design life.
- Discount rate.
- Discounting.
- Energy targets.
- Hard costs v soft costs.
- Key performance indicators.
- Life cycle.
- Life cycle assessment.
- Life Cycle Costing BG67 2016.
- Material procurement.
- Net Present Value.
- New Rules of Measurement.
- Off site, on track.
- Sustainability.
- Sustainability quantity surveyor.
- Utilising life cycle costing and life cycle assessment.
- Value management.
- Whole-life value.
Featured articles and news
The UK's Modern Industrial Strategy: A 10 year plan
Previous consultation criticism, current key elements and general support with some persisting reservations.
Building Safety Regulator reforms
New roles, new staff and a new fast track service pave the way for a single construction regulator.
Architectural Technologist CPDs and Communications
CIAT CPD… and how you can do it!
Cooling centres and cool spaces
Managing extreme heat in cities by directing the public to places for heat stress relief and water sources.
Winter gardens: A brief history and warm variations
Extending the season with glass in different forms and terms.
Restoring Great Yarmouth's Winter Gardens
Transforming one of the least sustainable constructions imaginable.
Construction Skills Mission Board launch sector drive
Newly formed government and industry collaboration set strategy for recruiting an additional 100,000 construction workers a year.
New Architects Code comes into effect in September 2025
ARB Architects Code of Conduct and Practice available with ongoing consultation regarding guidance.
Welsh Skills Body (Medr) launches ambitious plan
The new skills body brings together funding and regulation of tertiary education and research for the devolved nation.
Paul Gandy FCIOB announced as next CIOB President
Former Tilbury Douglas CEO takes helm.
UK Infrastructure: A 10 Year Strategy. In brief with reactions
With the National Infrastructure and Service Transformation Authority (NISTA).
Ebenezer Howard: inventor of the garden city. Book review.
The Grenfell Tower fire, eight years on
A time to pause and reflect as Dubai tower block fire reported just before anniversary.
Airtightness Topic Guide BSRIA TG 27/2025
Explaining the basics of airtightness, what it is, why it's important, when it's required and how it's carried out.
Construction contract awards hit lowest point of 2025
Plummeting for second consecutive month, intensifying concerns for housing and infrastructure goals.
Understanding Mental Health in the Built Environment 2025
Examining the state of mental health in construction, shedding light on levels of stress, anxiety and depression.