Mould growth in buildings
Contents |
[edit] Introduction
Mould (sometimes referred to as mildew) is a fungal growth. Whilst mould itself is not toxic, some moulds can produce toxins that can have negative effects on human health, for example causing asthma, rhinitis, itchy eyes, respiratory symptoms, respiratory infection and eczema.
Mould in buildings can be visible or can be hidden, but it is generally an indication of a defect such as thermal bridging, condensation, leaks or penetrating or rising damp.
Mould requires four factors for growth:
- Mould spores.
- Food.
- Appropriate temperature.
- Moisture.
[edit] Spores
Mould spores are microscopic (ranging from 3 to 40 microns) and ubiquitous in the environment. Mould spores can be found floating in the air and in normal house dust. It is not generally practical therefore to eliminate mould spores and this is not a strategy for controlling mould growth.
[edit] Food
Mould will feed on any substance that contains carbon atoms (such as organic substances). Many of the natural materials found in the built environment provide suitable food for mould, such as timber and paper. Removing sources of food for mould from an environment is generally impractical.
[edit] Appropriate temperature
The majority of moulds grow well in a range of temperatures similar to those that humans require. This temperature range is wide, and even temperatures close to freezing will not prevent growth. In warmer environments, moulds will thrive. It is generally impractical therefore to control mould growth through temperature.
[edit] Moisture
Most moulds require relatively high levels of moisture in order to grow. The majority require an equivalent of at least 70% relative humidity to thrive and most large mould outbreaks in buildings, occur where porous, cellulose-type materials contain persistent liquid water or condensation.
Humans typically prefer humidity levels below 70% and so limiting moisture availability and killing and removing active mould colonies is generally the easiest method of control.
For more information, see Moisture.
[edit] Methods for reducing moisture levels
In Europe, depending on the country, it is estimated that between 10% and 50% of buildings are damp (ref. WHO Europe, Damp and mould, Health risks, prevention and remedial actions 2009).
Moisture levels can be reduced through a number of measures:
- Natural or mechanical ventilation.
- Use of de-humidifiers or air conditioning units.
- Insulation of cold surfaces, such as pipes.
- Increasing air temperature.
- Removing sources of moisture such as drying clothes and ensuring vented tumble dryers are appropriately vented to the outside.
- Mending leaking pipes, wastes and overflows.
- Eliminating rising damp and penetrating damp.
[edit] Related articles on Designing Buildings Wiki.
- Approved Document C.
- Condensation.
- Cracking and building movement.
- Damp and timber report.
- Damp proofing.
- Defects in brickwork.
- Defects in stonework.
- Degradation of construction materials.
- Dry rot fungus.
- Humidity.
- Moisture.
- Penetrating damp.
- Recognising wood rot and insect damage in buildings.
- Rising damp.
- Rising damp in walls - diagnosis and treatment (DG 245).
- Spalling.
- Stain.
- Temperature.
- Thermal bridge.
- Ventilation.
- Wet rot.
[edit] External references
Featured articles and news
Extended reality in a post-pandemic world.
Can XR technology be leveraged in design & construction?
Or are you capping.
STEM ambassadors needed for ICE CityZen award.
Digital gaming competition for UK students aged 16 to 18.
Heritage protection in England vs Australia.
Fire doors and the Fire Door Inspection Scheme.
Three-quarters of fire doors fail inspections
UN International Day for Biological Diversity, May 22.
The role of geoparks, biospheres and world heritage sites.
BSRIA conference 2022, June 23.
Just one month to go ! Find out more here.
Restoring Broadbent’s Bath House
A new gallery for the University of Huddersfield.
Corruption in the construction industry.
What will it take to stop it ?
To celebrate world bee day 2022 !
Just one month until the changes to part L come into effect.
Not forgetting part F and the new part overheating part O.
Heat Pump demand rises by one quarter.
As energy prices jump up in cost.
With people in the UK from Ukraine.
Industry leader Steve Murray takes on role.
An abundant and versatile building material.
How overheating complicates ending gas in the UK.
600,000 heat pump installations targeted per year by 2028.
Cost planning, control and related articles on DB.
Helping prevent those unwanted outcomes.
ICE debate Public transport - post pandemic.
How has transport changed due to Covid-19 ?
Cross-ventilation in buildings. Do you have it ?
Will you need it ? after June 15 and the new Part O ?
Share your knowledge with the industry.
Create an account and write the first of many articles.
The green jobs delivery group.
CIAT commentary after the first meeting.
Liverpool's world heritage site status
Who is to blame?
Research recommends focussing on portfolio success rather than project success.