Heat rejection
Contents |
[edit] Introduction
Waste heat can be produced by any process that uses energy. In buildings, this might include:
- Heating, ventilation and air-conditioning systems (HVAC).
- Refrigeration.
- Machinery, equipment and industrial processes.
Where this waste heat is at a low-temperature, it may have limited useful capacity for work and so it may be rejected to the environment. However, if it is suitable for use in another process, a portion of heat that would otherwise be wasted might be reused. This is known as heat recovery.
Heat rejection methods include, air cooing, evaporative cooling, and ground coupling.
[edit] Air cooling
Air cooling can be as simple as using mechanical or natural ventilation to reject excess heat to the outside.
Typically in heating, ventilation and air-conditioning systems, air cooling rejects heat to the outside air by circulating 'outside' air over coils containing 'hot' fluid returning from the building. Heat is transferred from the coil to the air which is then rejected to the outside. See cooling for more information.
[edit] Evaporative cooling
When water evaporates, it absorbs significant amounts of heat energy (latent heat), which produces a cooling effect in its surroundings.
Direct evaporative coolers (sometimes referred to as sump coolers, swamp coolers, or desert coolers) draw hot, dry air through a continually dampened pad and supply cool, humid air.
Indirect evaporative cooling can be achieved by using a heat exchanger to cool supply air, by spraying water over the cooling coils of a conventional chiller or by cooling towers.
Cooling towers reject heat through the evaporation of water in a moving air stream within the cooling tower. The temperature and humidity of the air stream increases through contact with the warm water, and this air is then discharged. The cooled water is collected at the bottom of the tower. This process can achieve lower temperatures than air-cooled heat rejection systems. See Cooling towers for more information.
[edit] Ground coupling
Earth-to-air heat exchangers draw air through buried ducts or tubes (sometimes referred to as earth tubes). As the temperature of the ground below 3m is practically constant, it can be used to substantially reduce air temperatures. See Earth-to-air heat exchanger for more information.
Open or closed loop water to air heat exchangers, similarly exploit the relatively stable temperature of the earth to provide cool water. See Ground energy options for more information.
[edit] Heat recovery
Heat recovery is the process of collecting and re-using heat that would otherwise be lost. This can help reduce the energy consumption of the process or the heat can be used elsewhere, reducing running costs and carbon emissions. See Heat recovery for more information.
[edit] Related articles on Designing Buildings Wiki
Featured articles and news
The Buildings of the Malting Industry. Book review.
Conserving places with climate resilience in mind.
Combating burnout.
The 5 elements of seiri, seiton, seiso, seiketsu and shitsuke.
Shading for housing, a design guide
A look back at embedding a new culture of shading.
The Architectural Technology Awards
The AT Awards 2025 are open for entries!
ECA Blueprint for Electrification
The 'mosaic of interconnected challenges' and how to deliver the UK’s Transition to Clean Power.
Grenfell Tower Principal Contractor Award notice
Tower repair and maintenance contractor announced as demolition contractor.
Passivhaus social homes benefit from heat pump service
Sixteen new homes designed and built to achieve Passivhaus constructed in Dumfries & Galloway.
CABE Publishes Results of 2025 Building Control Survey
Concern over lack of understanding of how roles have changed since the introduction of the BSA 2022.
British Architectural Sculpture 1851-1951
A rich heritage of decorative and figurative sculpture. Book review.
A programme to tackle the lack of diversity.
Independent Building Control review panel
Five members of the newly established, Grenfell Tower Inquiry recommended, panel appointed.
Welsh Recharging Electrical Skills Charter progresses
ECA progressing on the ‘asks’ of the Recharging Electrical Skills Charter at the Senedd in Wales.