Chiller units
Chillers are used in buildings to provide cooling. This is typically for heating, ventilation and air conditioning (HVAC) systems providing thermal comfort for occupants, but they can also be used to provide cooling for industrial processes.
Chillers remove heat from a liquid through a refrigeration cycle in a process that is essentially the same as that used to cool domestic fridges. They can work on compression or absorption:
- In compression systems, a liquid refrigerant with a low boiling point absorbs heat from water returning from the building and boils in an evaporator to form a gas. The gas is then compressed, which increases its temperature further. The gas is then condensed, releasing its latent heat which is rejected to the outside. The process then repeats.
- Absorption refrigeration works on a similar basis, with a refrigerant that boils at low temperature and pressure, however, in this case, the refrigerant gas is then absorbed in a solution which is then heated in a ‘generator’ so that the refrigerant evaporates again, but this time at a higher pressure and temperature. The gas is then condensed, releasing its latent heat which is rejected to the outside. The process then repeats.
The rejection of heat from chiller units can be achieved by:
- Air cooling, which rejects heat to the outside air by circulating it through the condenser.
- Evaporative cooing, which uses the addition of a water mist to the air to enhance the cooing effect.
- Water cooling, which is generally suited to large systems and requires connection to cooling towers.
Heat recovery can be used to allow the rejected heat from chiller units to be re-used for space heating or to provide hot water.
The exact opposite of the refrigeration process can be achieved by a heat pump, which reverses the cycle so that heat is supplied to the building rather than cooling. Some systems are reversible, able to supple either heat or cooling. See Heat pump for more information.
Typically in heating, ventilation and air conditioning systems, chiller units produce chilled water that is piped to air handling units (or fan coil units) where it is used to cool the air that ventilates the building. The ‘warmed’ water is then returned to the chiller unit to be re-cooled. The process of cooling ventilation air will also reduce its humidity.
Air handling units may also include a heating coil for times when heating rather than cooling is required. In some situations, air that has already been cooled will be re-heated (typically in simple, single duct constant air volume (VAC) systems). Whilst this may seem wasteful, in buildings where there are some minor local variations in thermal demand it can be more economic than it would be to provide two separate air ducting networks.
Chilled water might be supplied to other components, such as chilled beams, chilled ceilings and so on.
An alternative system supplies the refrigerant itself (rather than chilled water) to terminal units supplying different thermal zones. Variable refrigerant flow (VRF) systems use a single external condensing unit and multiple internal evaporators and can be more efficient, more compact and offer greater flexibility than other HVAC systems. See Variable refrigerant flow for more information.
Some refrigerants have both ozone depletion potential (ODP) and global warming potential (GWP), and as a consequence refrigerants such as CFCs (chlorofluorocarbons) are banned. New equipment using HCFCs ((hydrochlorofluorocarbons such as R22 and R408A) was banned in 2001 (2004 for small systems), and the use of virgin HCFCs was banned in 2010, when it also became illegal to manufacture HCFC refrigerants or for suppliers to keep them in stock. From January 1st 2015 the use of HCFCs was prohibited in any form, even for maintenance. The use of HFCs (hydrofluorocarbons, including 417A, 422A, 422D, 424A, 427A, 428A and 434A) continues to be permitted. Other refrigerants include, ammonia (common in absorption refrigeration), carbon dioxide and non-halogenated hydrocarbons.
It is important that the design of HVAC systems is considered as a part of the overall design process for the building, and not seen as an add on at the end. It is also important that HVAC systems are regularly maintained to ensure optimum performance and occupant comfort.
[edit] Related articles on Designing Buildings
- Absorption chiller.
- Absorption refrigeration.
- Air conditioning inflation and supply chain crisis
- Air conditioning.
- Air handling unit.
- Chilled beam.
- Chlorofluorocarbons CFCs.
- Constant air volume.
- Fan coil unit.
- Heat pumps.
- Heat recovery.
- HVAC.
- Hydrochlorofluorocarbons HCFCs.
- Passive building design.
- Refrigerants.
- Thermal comfort.
- Variable air volume.
- Variable refrigerant flow.
- Ventilation.
Featured articles and news
UCEM becomes the University of the Built Environment
Major milestone in its 106-year history, follows recent merger with London School of Architecture (LSE).
Professional practical experience for Architects in training
The long process to transform the nature of education and professional practical experience in the Architecture profession following recent reports.
A people-first approach to retrofit
Moving away from the destructive paradigm of fabric-first.
International Electrician Day, 10 June 2025
Celebrating the role of electrical engineers from André-Marie Amperè, today and for the future.
New guide for clients launched at Houses of Parliament
'There has never been a more important time for clients to step up and ...ask the right questions'
The impact of recycled slate tiles
Innovation across the decades.
EPC changes for existing buildings
Changes and their context as the new RdSAP methodology comes into use from 15 June.
Skills England publishes Sector skills needs assessments
Priority areas relating to the built environment highlighted and described in brief.
BSRIA HVAC Market Watch - May 2025 Edition
Heat Pump Market Outlook: Policy, Performance & Refrigerant Trends for 2025–2028.
Committing to EDI in construction with CIOB
Built Environment professional bodies deepen commitment to EDI with two new signatories: CIAT and CICES.
Government Grenfell progress report at a glance
Line by line recomendation overview, with links to more details.
An engaging and lively review of his professional life.
Sustainable heating for listed buildings
A problem that needs to be approached intelligently.
50th Golden anniversary ECA Edmundson apprentice award
Deadline for entries has been extended to Friday 27 June, so don't miss out!
CIAT at the London Festival of Architecture
Designing for Everyone: Breaking Barriers in Inclusive Architecture.
Mixed reactions to apprenticeship and skills reform 2025
A 'welcome shift' for some and a 'backwards step' for others.
Comments