Absorption refrigeration in buildings
Refrigerants are used in buildings:
- For heating, ventilation and air conditioning (HVAC) systems.
- To provide cooling for refrigeration.
- To provide cooling for industrial processes.
They provide cooling in a process that is essentially the same as that used in domestic fridges, based on either compression or absorption.
Absorption and compression refrigeration both work on a similar basis, in that a refrigerant boils at a low temperature and pressure, and is then is then pressurised, and condensed at a higher temperature and pressure. The process of condensing releases heat which is rejected.
In ‘conventional’ compression systems, a liquid refrigerant with a low boiling point absorbs heat from the body that is being cooled and boils in an evaporator to form a gas. The resulting gas is then compressed, which increases its temperature further. The gas is then condensed, releasing its latent heat which is rejected. The process then repeats.
However, whilst in compression refrigeration, the compression and refrigerant flow is achieved by an electrical compressor, in absorption refrigeration, compression is achieved by heating, and circulation is achieved absorbing the refrigerant into and absorber and by an electrical pump. This pump uses much less energy than a compressor.
The liquid refrigerant absorbs heat from the body that is to be cooled (in buildings this may be water that once cool is circulated back to the building) and the refrigerant evaporates at low pressure (in the ‘evaporator’). It is then absorbed into an absorber fluid and the refrigerant / absorber mixture is heated (in the ‘generator’). The refrigerant evaporates again, this time at higher temperature and pressure. The refrigerant is then condensed (in the ‘condenser’) and the heat rejected. The process is then repeated.
Double-effect absorption cooling repeats the process of heating and condensing with as second generator and condenser to increase cooling capacity.
The heat in absorption refrigeration can be gas powered, but absorption refrigeration is particularly suited to situations where ‘waste’, or other low-cost heat supply is available, such as; surplus heat from combined heat and power plant (CHP), heat from industrial processes, district heating, geothermal or solar thermal energy and so on.
Absorption refrigeration was first developed in France in 1850’s, but it was not commercially exploited until the 1920’s.
The most common combinations of refrigerant and absorbent fluid are:
Ammonia is not an ozone depleting gas or a global warming gas. However it is flammable and toxic so additional precautions are necessary in design and use.
[edit] Related articles on Designing Buildings
- Absorption cooling.
- Absorption heat pump.
- Absorption refrigeration.
- Adsorption cooling.
- Air conditioning.
- Air handling unit.
- BREEAM Impact of refrigerants.
- Chilled beam.
- Chiller unit.
- Chilled water.
- Compression refrigeration.
- Constant air volume.
- Evaporative cooling.
- Fan coil unit.
- Heat pumps
- HVAC.
- Passive building design.
- Refrigerant.
- Variable air volume.
- Variable refrigerant flow.
[edit] External references
Featured articles and news
Do you take the lead in a circular construction economy?
Help us develop and expand this wiki as a resource for academia and industry alike.
Warm Homes Plan Workforce Taskforce
Risks of undermining UK’s energy transition due to lack of electrotechnical industry representation, says ECA.
Cost Optimal Domestic Electrification CODE
Modelling retrofits only on costs that directly impact the consumer: upfront cost of equipment, energy costs and maintenance costs.
The Warm Homes Plan details released
What's new and what is not, with industry reactions.
Could AI and VR cause an increase the value of heritage?
The Orange book: 2026 Amendment 4 to BS 7671:2018
ECA welcomes IET and BSI content sign off.
How neural technologies could transform the design future
Enhancing legacy parametric engines, offering novel ways to explore solutions and generate geometry.
Key AI related terms to be aware of
With explanations from the UK government and other bodies.
From QS to further education teacher
Applying real world skills with the next generation.
A guide on how children can use LEGO to mirror real engineering processes.
Data infrastructure for next-generation materials science
Research Data Express to automate data processing and create AI-ready datasets for materials research.
Wired for the Future with ECA; powering skills and progress
ECA South Wales Business Day 2025, a day to remember.
AI for the conservation professional
A level of sophistication previously reserved for science fiction.
Biomass harvested in cycles of less than ten years.
An interview with the new CIAT President
Usman Yaqub BSc (Hons) PCIAT MFPWS.
Cost benefit model report of building safety regime in Wales
Proposed policy option costs for design and construction stage of the new building safety regime in Wales.
Do you receive our free biweekly newsletter?
If not you can sign up to receive it in your mailbox here.






















