Geotextiles
Contents |
[edit] Introduction
Geotextiles were originally developed in the 1950s for use in erosion control situations where soil retention and fabric strength was required, such as in sea walls. They are now used in a wide range of civil engineering applications, such as roads, embankments, retaining structures, airfields, railways, dams and reservoirs, canals, coastal defences, and so on. In addition, composite materials known as geosynthetics have been developed for products such as geogrids, geotubes and meshes, for a range of geoengineering applications.
Geotextiles are typically made using synthetic fibres such as polyester or polypropylene which create a flexible and porous fabric capable of providing strength and stability. There are three basic forms:
- Woven: This resembles sacking.
- Needle-punched: This resembles felt.
- Heat-bonded: This resembles ironed felt.
[edit] Uses of geotextiles
Geotextiles have the ability to reinforce, protect, filter, drain and separate, and many applications use them alongside soil, placed at the tension surface for strength purposes.
The main uses of geotextiles include:
[edit] Separation
Geotextiles can be used to prevent the mixing of two soil layers of different particle sizes, such as landfill material and native soil, or stone material and subgrade soil.
[edit] Stabilisation
The geotextile acts as a separator, allowing water from soft natural soil to pass into a free-draining construction soil, which allows the natural soil to consolidate, thereby gaining strength and providing a more suitable surface for foundations.
[edit] Drainage
Geotextiles can be used to enable transmissivity, where the flow of water runs parallel to the plane of the geotextile. Superfluous water can be collected and discharged efficiently, particularly by needle-punched non-woven materials. The characteristic of transmissivity can be optimised using geotextiles of varying thicknesses.
[edit] Filtration
Geotextiles, of a needle-punched structure, can be used to provide an interface for the filtration of fine particles in soils. The structure of the geotextile enables fine particles to be retained while allowing water to pass through. As water passes through, soil is filtered out and builds up behind the geotextile, creating a natural soil filter.
[edit] Reinforcement
Due to their high tensile strength and soil-fabric friction coefficient, heavy geotextiles can be used as a reinforcement solution, using fill materials to reinforce earth structures. the geotextile is placed within the material, in the same way as with reinforced concrete. While stabilisation is achieved by allowing water to drain from unstable soil, reinforcement is provided for by the stress/strain characteristics of the geotextile which add strength to the whole system. This is as opposed to stabilisation, which places the geotextile on or around the required area.
[edit] Protection
Geotextiles are used to protect earth embankments from erosion. Leaching of fine material can be prevented by placing geotextiles in layers. Sloped, stepped shapes are also effective in protecting shorelines from storm damage. They can be made impermeable when impregnated with an asphaltic emulsion, making them suitable for use as moisture barriers, for example, in the repair of pavements.
In combination with steel wire fencing, geotextiles can be used to contain explosive debris during building demolitions.
NB Guide to energy retrofit of traditional buildings, published by Historic Environment Scotland in November 2021, defines geotextiles as: ‘…moisture vapour permeable artificial fabrics.’
[edit] Related articles on Designing Buildings
Featured articles and news
A case study and a warning to would-be developers
Creating four dwellings for people to come home to... after half a century of doing this job, why, oh why, is it so difficult?
Reform of the fire engineering profession
Fire Engineers Advisory Panel: Authoritative Statement, reactions and next steps.
Restoration and renewal of the Palace of Westminster
A complex project of cultural significance from full decant to EMI, opportunities and a potential a way forward.
Apprenticeships and the responsibility we share
Perspectives from the CIOB President as National Apprentice Week comes to a close.
The first line of defence against rain, wind and snow.
Building Safety recap January, 2026
What we missed at the end of last year, and at the start of this...
National Apprenticeship Week 2026, 9-15 Feb
Shining a light on the positive impacts for businesses, their apprentices and the wider economy alike.
Applications and benefits of acoustic flooring
From commercial to retail.
From solid to sprung and ribbed to raised.
Strengthening industry collaboration in Hong Kong
Hong Kong Institute of Construction and The Chartered Institute of Building sign Memorandum of Understanding.
A detailed description from the experts at Cornish Lime.
IHBC planning for growth with corporate plan development
Grow with the Institute by volunteering and CP25 consultation.
Connecting ambition and action for designers and specifiers.
Electrical skills gap deepens as apprenticeship starts fall despite surging demand says ECA.
Built environment bodies deepen joint action on EDI
B.E.Inclusive initiative agree next phase of joint equity, diversity and inclusion (EDI) action plan.
Recognising culture as key to sustainable economic growth
Creative UK Provocation paper: Culture as Growth Infrastructure.
Futurebuild and UK Construction Week London Unite
Creating the UK’s Built Environment Super Event and over 25 other key partnerships.
Welsh and Scottish 2026 elections
Manifestos for the built environment for upcoming same May day elections.
Advancing BIM education with a competency framework
“We don’t need people who can just draw in 3D. We need people who can think in data.”
























