Fly ash
|
Contents |
[edit] Introduction
Fly ash is a general term given to the lighter fine ash that is produced during the combustion of any material in a furnace or incinerator, it can be around 5-10% of the mass of the material being burnt. The density of this lighter fly ash called fly ash because it is kept in suspension during combustion and normally accumulates on the sides of chimney flues. The other ash that is produced is known as the main ash or bottom ash, this is a heavier ash that falls to the base of the incinerator. Fly ash is also commonly associated more directly with the combustion of coal as described here.
Fly ash (or flue ash or pulverised flue ash PFA) is a by-product of the coal combustion process, particularly in electricity generating power stations. It is formed when fine particulates of burned coal fuse in suspension and are driven out with flue gases. As they are driven out of the combustion chamber, the fused material cools and forms glassy particles called fly ash. Modern coal-fired power plants use particle filtration equipment to catch the fly ash before it reaches the chimneys.
(NB: Coal ash is the term given to the mixture of fly ash (which rises) and the bottom ash which falls to the bottom of the boiler).
[edit] Composition
The chemical components of fly ash will depend on the type of coal being burnt and its origin. Typically, if the coal derives from coal-bearing rock strata, the fly ash will include substantial quantities of silicon dioxide (SiO2), aluminium oxide (Al2O3) and calcium oxide (CaO). Other constituents may be present as trace quantities and may include (alphabetical order) arsenic, beryllium, boron, lead, mercury, thallium and vanadium – to name a few. In appearance similar to Portland cement, fly ash is a fine powder with particles that are largely spherical-shaped, ranging in size from 0.5µm to 300 µm.
Before the advent of modern air pollution control standards, much of the smog and air pollution in early to mid-20th century European cities was partly the result of releasing unfiltered fly ash directly into the atmosphere.
Fortunately, environmental and health legislation has reduced the emissions to less than 1% of the fly ash produced. Modern filtration processes may use mechanical collectors (such as dust cyclones that rely on vortex separation); electrostatic precipitators or filter bags. This has resulted in huge quantities of fly ash that must be disposed of: today, around 65% of the global fly ash production is sent to landfill. This has increased landfill costs globally which has led to more efforts to find recycling uses.
[edit] Classes of fly ash
There are two classes of fly ash:
- Class F (high calcium) largely produced by burning bituminous or anthracite coals. Pozzolanic in nature.
- Class C (low calcium) largely from burning sub-bituminous or lignite coal.
[edit] Applications
One of the largest consumers of fly ash is the production of concrete, where it is used as a substitute for Portland cement. Other uses include as a constituent in:
- Concrete block paving and other concrete products, such as pipes.
- Clay brick production.
- Blended cements.
- Mineral filler for asphalt roads.
- Soil stabilisation.
- Structural fill.
- Waste stabilisation and treatment.
[edit] Related articles on Designing Buildings Wiki
Featured articles and news
Building Safety recap January, 2026
What we missed at the end of last year, and at the start of this...
National Apprenticeship Week 2026, 9-15 Feb
Shining a light on the positive impacts for businesses, their apprentices and the wider economy alike.
Applications and benefits of acoustic flooring
From commercial to retail.
From solid to sprung and ribbed to raised.
Strengthening industry collaboration in Hong Kong
Hong Kong Institute of Construction and The Chartered Institute of Building sign Memorandum of Understanding.
A detailed description fron the experts at Cornish Lime.
IHBC planning for growth with corporate plan development
Grow with the Institute by volunteering and CP25 consultation.
Connecting ambition and action for designers and specifiers.
Electrical skills gap deepens as apprenticeship starts fall despite surging demand says ECA.
Built environment bodies deepen joint action on EDI
B.E.Inclusive initiative agree next phase of joint equity, diversity and inclusion (EDI) action plan.
Recognising culture as key to sustainable economic growth
Creative UK Provocation paper: Culture as Growth Infrastructure.
Futurebuild and UK Construction Week London Unite
Creating the UK’s Built Environment Super Event and over 25 other key partnerships.
Welsh and Scottish 2026 elections
Manifestos for the built environment for upcoming same May day elections.
Advancing BIM education with a competency framework
“We don’t need people who can just draw in 3D. We need people who can think in data.”
Guidance notes to prepare for April ERA changes
From the Electrical Contractors' Association Employee Relations team.
Significant changes to be seen from the new ERA in 2026 and 2027, starting on 6 April 2026.
First aid in the modern workplace with St John Ambulance.
Solar panels, pitched roofs and risk of fire spread
60% increase in solar panel fires prompts tests and installation warnings.
Modernising heat networks with Heat interface unit
Why HIUs hold the key to efficiency upgrades.

























