Earthquake resistant building materials
|
| Rescue teams in Natori, Japan search for missing people in the aftermath of the 2011 quake. |
Contents |
[edit] Introduction
Seismic events known as earthquakes occur when the earth 'shakes' due to the release of energy below its surface. This energy can be caused by natural events (such as volcanoes or landslides) or occasionally by human activity (such as mine blasts or underground nuclear experiments) and can cause significant damage to structures in their path.
Several building materials have been developed to improve the resilience of structures to earthquakes.
[edit] Fibre reinforced paint
In 2014, a team of researchers at The University of Tokyo introduced glass-fibre reinforced paint referred to as SG2000. Headed up by Kenjiro Yamamoto, the team began experimenting with techniques that could be used to retrofit masonry structures in areas where earthquakes were likely to occur.
Their research resulted in the development of SG2000 - a coating made from standard acrylic-silicone paint resin and glass fibres. During laboratory tests, the coating, which is simple to apply to existing structures, was able to help keep bricks connected after mortar joints - which had been covered with the coating - were broken (thus reducing the likelihood of injury caused by falling bricks). It also showed that the coating - which did not increase the test building’s stiffness - allowed masonry structures to bend rather than break or collapse.
[edit] Earthquake resistant concrete
In October 2017, the University of British Columbia introduced a seismic-resistant, fibre-reinforced concrete. Referred to as eco-friendly ductile cementitious composite (EDCC), the material is engineered at the molecular scale to be strong, malleable, and ductile, similar to steel—capable of dramatically enhancing the earthquake resistance of a seismically vulnerable structure when applied as a thin coating on the surfaces.
EDCC combines cement with polymer-based fibres, fly ash and other industrial additives, making it highly resilient, according to UBC civil engineering professor Nemy Banthia, who supervised the work.
To test its effectiveness, the product was sprayed on walls to a thickness of 10mm, which was deemed sufficient by the research team. The test walls were then subjected to high levels of vibration (equivalent to the magnitude 9.0–9.1 earthquake that struck Tohoku, Japan in 2011) and other types and intensities of earthquake. After passing all tests, EDCC was given its first real-life application in the seismic retrofit of a Vancouver elementary school.
The research was funded by the UBC-hosted Canada-India Research Centre of Excellence IC-IMPACTS, which promotes research collaboration between Canada and India. IC-IMPACTS has made EDCC available to retrofit a school in Roorkee in Uttarakhand, a highly seismic area in northern India.
Other EDCC applications include resilient homes, pipelines, pavements, offshore platforms, blast-resistant structures and industrial floors.
[edit] Related articles on Designing Buildings Wiki
- Concrete fibre.
- Cool paint.
- Earthquakes and the seismic strengthening of churches.
- Earthquake Design Practice for Buildings.
- Fly ash.
- Glass fibre reinforced concrete.
- Managing and responding to disaster.
- Paints and coatings.
- Ultra high performance fibre concrete.
[edit] External resources
- Kenjiro Yamamoto, Muneyoshi Numada and Kimiro Meguro, Shake table tests on one-quarter scaled models of masonry houses retrofitted with fiber reinforced paint.
- University of British Columbia, UBC researchers develop earthquake-resistant concrete.
Featured articles and news
What they are, how they work and why they are popular in many countries.
Plastic, recycling and its symbol
Student competition winning, M.C.Esher inspired Möbius strip design symbolising continuity within a finite entity.
Do you take the lead in a circular construction economy?
Help us develop and expand this wiki as a resource for academia and industry alike.
Warm Homes Plan Workforce Taskforce
Risks of undermining UK’s energy transition due to lack of electrotechnical industry representation, says ECA.
Cost Optimal Domestic Electrification CODE
Modelling retrofits only on costs that directly impact the consumer: upfront cost of equipment, energy costs and maintenance costs.
The Warm Homes Plan details released
What's new and what is not, with industry reactions.
Could AI and VR cause an increase the value of heritage?
The Orange book: 2026 Amendment 4 to BS 7671:2018
ECA welcomes IET and BSI content sign off.
How neural technologies could transform the design future
Enhancing legacy parametric engines, offering novel ways to explore solutions and generate geometry.
Key AI related terms to be aware of
With explanations from the UK government and other bodies.
From QS to further education teacher
Applying real world skills with the next generation.
A guide on how children can use LEGO to mirror real engineering processes.
Data infrastructure for next-generation materials science
Research Data Express to automate data processing and create AI-ready datasets for materials research.
Wired for the Future with ECA; powering skills and progress
ECA South Wales Business Day 2025, a day to remember.
AI for the conservation professional
A level of sophistication previously reserved for science fiction.
Biomass harvested in cycles of less than ten years.
An interview with the new CIAT President
Usman Yaqub BSc (Hons) PCIAT MFPWS.
Cost benefit model report of building safety regime in Wales
Proposed policy option costs for design and construction stage of the new building safety regime in Wales.
Do you receive our free biweekly newsletter?
If not you can sign up to receive it in your mailbox here.

























