Evolving opportunities for providing thermal comfort
This article summarises a research paper, ‘Evolving opportunities for providing thermal comfort’ by Gail Brager, Hui Zhang & Edward Arens published in 2015 in --Building Research & Information, 43:3, 274-287, DOI: 10.1080/09613218.2015.993536.
The paper proposes new ways of thinking about the design and operation of buildings to provide enhanced thermal experiences and reduce energy consumption. The strategies that are suggested are supported by research, development and monitoring of new practices carried out by the Center for the Built Environment (CBE) at the University of California, Berkeley.
It is estimated that buildings in the USA contribute 39% of total greenhouse gas emissions, with 80% of this resulting from energy use for heating, cooling, ventilation and lighting. A significant proportion of this energy use is a consequence of controlling the internal environment of buildings within a narrow range of temperatures, even though this leaves 20% of occupants dissatisfied.
The current tendency is to create uniform conditions in buildings with a temperature range of between 22 and 24°C, delivered through fully-controlled heating, ventilation and air conditioning (HVAC) systems. However, this is energy intensive and can result in thermal monotony, or thermal boredom. In addition, cooling systems frequently over-cool, delivering temperatures in the summer that are below those in the winter.
Studies have suggested that for every 1°C of expansion in either direction of the narrowly-controlled thermal ‘dead zone’, annual central HVAC energy consumption can be reduced by 10%. In addition, it is proposed that greater comfort, and even thermal pleasure, can be achieved by a more dynamic, non-uniform environment, and that a temperature range of 21 to 27°C can achieve optimal operative performance.
The paper suggests that performance is more strongly related to thermal comfort, rather than temperature per se, with influences such as; humidity, air movement, operative control and personal comfort systems, and it cites an emerging understanding of ‘alliesthesia’ which proposes that more variable indoor environments can enhance satisfaction and well-being.
The paper sets out five changes that could help deliver a richer thermal environment and reduce energy consumption:
- Moving from centralised to personal control.
- From still to breezy air movement.
- From thermal neutrality to delight.
- From active to passive design.
- From disengagement to improved feedback.
To remove barriers to adopting these changes, practitioners and researchers must work together to influence building standards, design guidelines and green building rating systems.
Gail Brager, Hui Zhang & Edward Arens (2015) Evolving opportunities for providing thermal comfort, Building Research & Information, 43:3, 274-287, DOI: 10.1080/09613218.2015.993536.
Read the full paper at Taylor & Francis Online.
See also:
- Richard de Dear (2011) Revisiting an old hypothesis of human thermal perception: alliesthesia. Building Research & Information, 39:2, 108-117. DOI: 10.1080/09613218.2011.552269.
- Thomas Parkinson & Richard de Dear (2015) Thermal pleasure in built environments: the physiology of alliesthesia. Building Research & Information, 43:3, 288-301. DOI: 10.1080/09613218.2015.989662.
[edit] Find out more
[edit] Related articles on Designing Buildings Wiki
- BREEAM Thermal comfort.
- Cold stress.
- Comfort in low energy buildings.
- Dry-bulb temperature.
- Globe temperature.
- Healthy excursions outside the thermal comfort zone.
- Heat stress.
- Mean radiant temperature.
- Operative temperature.
- Overheating.
- Predicted mean vote.
- Psychometric charts.
- Sling psychrometer.
- Temperature.
- Thermal comfort.
- Thermal indices.
- Thermal pleasure in built environments: physiology of alliesthesia.
- Wet-bulb temperature.
- Wet-bulb globe temperature.
Featured articles and news
The 5 elements of seiri, seiton, seiso, seiketsu and shitsuke.
Shading for housing, a design guide
A look back at embedding a new culture of shading.
The Architectural Technology Awards
The AT Awards 2025 are open for entries!
ECA Blueprint for Electrification
The 'mosaic of interconnected challenges' and how to deliver the UK’s Transition to Clean Power.
Grenfell Tower Principal Contractor Award notice
Tower repair and maintenance contractor announced as demolition contractor.
Passivhaus social homes benefit from heat pump service
Sixteen new homes designed and built to achieve Passivhaus constructed in Dumfries & Galloway.
CABE Publishes Results of 2025 Building Control Survey
Concern over lack of understanding of how roles have changed since the introduction of the BSA 2022.
British Architectural Sculpture 1851-1951
A rich heritage of decorative and figurative sculpture. Book review.
A programme to tackle the lack of diversity.
Independent Building Control review panel
Five members of the newly established, Grenfell Tower Inquiry recommended, panel appointed.
Welsh Recharging Electrical Skills Charter progresses
ECA progressing on the ‘asks’ of the Recharging Electrical Skills Charter at the Senedd in Wales.
A brief history from 1890s to 2020s.
CIOB and CORBON combine forces
To elevate professional standards in Nigeria’s construction industry.
Amendment to the GB Energy Bill welcomed by ECA
Move prevents nationally-owned energy company from investing in solar panels produced by modern slavery.
Gregor Harvie argues that AI is state-sanctioned theft of IP.
Experimental AI housing target help for councils
Experimental AI could help councils meet housing targets by digitising records.
BSRIA Occupant Wellbeing survey BOW
Occupant satisfaction and wellbeing tool inc. physical environment, indoor facilities, functionality and accessibility.