The Science of Lifts
Contents |
[edit] How do Lifts Work?
A lift uses physical mechanisms that work together to lift or lower a car to various floors. The key components of a lift system include one or more car, a counterweight, an electric motor, metal cables, and various security systems.
Each part plays a particularly important part in the role of a lift system, and there are a lot of physical principles that are considered to ensure the lift stays functional and as safe as possible.
[edit] Conservation of Energy
This principle is one of the most widely known physical laws that is used. The law states that the total energy of a system that doesn’t interact with its surroundings remains constant. It is also referred to in the following statement:
“Energy is neither created nor destroyed; it transforms from one form to another.”
This would be, for example, converting electrical energy to kinetic energy within a motor. This law is particularly important in lift design, as it helps with the understanding of the raising and lowering of a lift car. Lift cars possess gravitational potential energy (GPE), which is the energy that an object possesses depending on how far the object is from Earth.
A lift that is high up has a greater GPE than if it was lower. Gaining this GPE must come from somewhere, and it comes from mechanical or electrical energy from the motor. To lift a car, more force needs to be applied than the car’s mass times by Earth’s acceleration due to gravity.
For example, lifting a 1,000kg car would require approximately 10,000N to lift using a single pulley, which is an immense amount of force.
[edit] The Physics of Counterweights
Counterweights provide a way to make life a lot easier when lifting a car to higher floors. Traditionally, counterweights weigh the same as when a lift is at half capacity. For example, if a car weighed 1,000kg and has a capacity of 1,000kg, the counterweight would weigh 1,500kg.
Because of this extra weight, it means that less force and, therefore, energy is needed to lift the car. For example, if the lift car is 3,000kg and the counterweight is 2,000kg, then 1,000kg is needed to be lifted as opposed to 3,000kg – an energy reduction of 66.7%.
Because of how they are implemented, it also means that the counterweight increases the acceleration that is required to raise the lift and decreases the acceleration that is required to lower the car, all of which helps to lower the amount of energy that is required by the motor.
As well as this, counterweights help to reduce the amount of energy that is used by the motor, which is beneficial in terms of increasing the environmental friendliness of lift systems. The goal is to ensure that the least amount of energy is used, whilst also maintaining the most efficient service possible.
[edit] Related articles on Designing Buildings
- A brief history of lifts over the years.
- Building engineering physics.
- Considerations When Installing a Residential Lift.
- Home lifts.
- Lifting platform.
- Lift motor room.
- Lift Standards: EN 81-20 and EN 81-50.
- Lifts and Escalators: A Quality Perspective.
- Lifts and Their Special Operating Modes.
- Lifts for buildings.
- Lifts for office buildings.
- Pulley.
- Smart elevators.
- The hidden mechanics of lift routing.
- The importance of service lifts.
- The world's fastest lifts.
--Nathan Massey 14:38, 11 Jul 2017 (BST)
Featured articles and news
Futurebuild and UK Construction Week London Unite
Creating the UK’s Built Environment Super Event and over 25 other key partnerships.
Welsh and Scottish 2026 elections
Manifestos for the built environment for upcoming same May day elections.
Advancing BIM education with a competency framework
“We don’t need people who can just draw in 3D. We need people who can think in data.”
Guidance notes to prepare for April ERA changes
From the Electrical Contractors' Association Employee Relations team.
Significant changes to be seen from the new ERA in 2026 and 2027, starting on 6 April 2026.
First aid in the modern workplace with St John Ambulance.
Ireland's National Residential Retrofit Plan
Staged initiatives introduced step by step.
Solar panels, pitched roofs and risk of fire spread
60% increase in solar panel fires prompts tests and installation warnings.
Modernising heat networks with Heat interface unit
Why HIUs hold the key to efficiency upgrades.
Reflecting on the work of the CIOB Academy
Looking back on 2025 and where it's going next.
Procurement in construction: Knowledge hub
Brief, overview, key articles and over 1000 more covering procurement.
Sir John Betjeman’s love of Victorian church architecture.
Exchange for Change for UK deposit return scheme
The UK Deposit Management Organisation established to deliver Deposit Return Scheme unveils trading name.
A guide to integrating heat pumps
As the Future Homes Standard approaches Future Homes Hub publishes hints and tips for Architects and Architectural Technologists.
BSR as a standalone body; statements, key roles, context
Statements from key figures in key and changing roles.
Resident engagement as the key to successful retrofits
Retrofit is about people, not just buildings, from early starts to beyond handover.























Comments
It did not help me at all shouldn't have wasted my time on ya.
Sorry to hear, have you checked out the related articles section.