Research on novel cements to reduce CO2 emissions
In August 2016, BRE published Performance and durability of concrete made using lower carbon belite-ye'elimite-ferrite cement (BR 512).
Concrete is likely to continue to be the primary volume construction material for most structural applications and its use is likely to grow. Portland cement (PC) and blended PCs are currently the only economic binders for concrete that can meet performance and durability requirements under the wide range of conditions to which concrete is exposed.
Cement manufacture produces large amounts of CO2 due to energy use and the calcination of CaCO3. Cement manufacture consequently accounts for about 5% of total global anthropogenic (human-generated) CO2 emissions.
The pressure to reduce energy consumption and CO2 emissions during cement manufacture has led the industry to increase substitution of Portland cement clinker in conventional cements with other ingredients approved for standard production, such as ground granulated blastfurnace slag (ggbs), pulverised-fuel ash (pfa or fly ash), natural pozzolans and limestone.
However, there have until recently been few serious attempts to develop novel cements based on alternative clinkers with intrinsically lower energy requirements and CO2 emissions than conventional Portland cement clinkers.
This new report summarises work on cements based, not on C3S (the major phase in PC), but C2S as the major phase, with C4A3$ (calcium sulfoaluminate or ye’elimite) and C4AF (ferrite) as the other two principal phases.
It specifically focuses on the LafargeHolcim-patented Aether cements as an example of this type of cement. These cements can be made from conventional raw materials, in existing industrial installations and offer similar performances to CEM I (ordinary) PC, but with 25-30% lower CO2 emissions.
The work summarised in the report was funded under the EU LIFE+ and SILC programmes to assess the performance and durability of Aether concrete. It shows that good-quality concretes can be made using a range of different batches of Aether cement. Specimens have been prepared to allow testing to continue over a number of years. To date, durability data for up to two years have been recorded.
Results have shown the following:
- Good-quality concretes can be prepared using Aether cement. The compressive strength of Aether concretes at lower water:cement (w/c) ratios at least matches that of otherwise equivalent PC concretes at test ages of up to two years.
- The dimensional stability of Aether concretes stored in water at 5ºC and 20ºC is comparable to that of otherwise equivalent PC concretes at test ages of up to two years.
- Aether concretes stored in air at 20°C show less drying shrinkage than equivalent PC concretes.
- Aether concretes have not shown signs of deterioration on exposure to sulfate solutions over two years of exposure. Otherwise equivalent PC concretes show significant deterioration on exposure to sulfate solutions.
- Aether concretes deteriorate on exposure to citric acid solution. However, the rate of deterioration is comparable to that of otherwise equivalent PC concretes. In both Aether and PC concretes, acid resistance increases with concrete quality and curing.
- Whilst the carbonation front in Aether concretes is less well defined than in PC concretes, the rate of carbonation of Aether concretes appears to be higher than that of otherwise equivalent PC concretes stored in similar conditions. Further tests will be required to assess whether there is any impact on the corrosion of embedded reinforcement.
- The gas permeability and chloride diffusion coefficient of Aether concretes are lower than those of otherwise equivalent PC concretes. These results are consistent with Aether concretes being durable, although other factors (such as exposure environment and mix design) need to be taken into account.
- A number of large reinforced concrete elements have been produced using Aether concretes. The elements were of good quality and will be stored on the BRE exposure site at an inland location in southern England to allow ongoing monitoring of performance.
- Specimens have been prepared to assess the susceptibility of Aether concretes to deterioration as a result of alkali– silica reaction (ASR) or delayed ettringite formation (DEF). Data available to date has not indicated a susceptibility to these processes, although the tests need to be continued over a longer period before conclusions regarding durability can be made.
To purchase the report, go to BRE Bookshop.
This article was originally published by BRE Buzz on 4 August 2016. It was written by Ali Nicholl.
--BRE Buzz
[edit] Related articles on Designing Buildings Wiki
- Aggregate.
- Alkali-activated binder.
- Alkali-activated binders for precast and ready-mixed concrete products: New supply chains, business models and environmental benefits.
- Alkali-silica reaction (ASR).
- BES 6001 Responsible sourcing of construction products.
- BRE Buzz articles on Designing Buildings Wiki.
- Cement.
- Concrete.
- Decarbonising concrete in the UK.
- High alumina cement.
- How scientists solved the riddle of cement’s structure.
- Mortar.
- Screed.
- Stucco.
- Sustainable materials.
Featured articles and news
Key points for construction at a glance with industry reactions.
Functionality, visibility and sustainability
The simpler approach to specification.
Architects, architecture, buildings, and inspiration in film
The close ties between makers and the movies, with our long list of suggested viewing.
SELECT three-point plan for action issued to MSPs
Call for Scottish regulation, green skills and recognition of electrotechnical industry as part of a manifesto for Scottish Parliamentary elections.
UCEM becomes the University of the Built Environment
Major milestone in its 106-year history, follows recent merger with London School of Architecture (LSE).
Professional practical experience for Architects in training
The long process to transform the nature of education and professional practical experience in the Architecture profession following recent reports.
A people-first approach to retrofit
Moving away from the destructive paradigm of fabric-first.
International Electrician Day, 10 June 2025
Celebrating the role of electrical engineers from André-Marie Amperè, today and for the future.
New guide for clients launched at Houses of Parliament
'There has never been a more important time for clients to step up and ...ask the right questions'
The impact of recycled slate tiles
Innovation across the decades.
EPC changes for existing buildings
Changes and their context as the new RdSAP methodology comes into use from 15 June.
Skills England publishes Sector skills needs assessments
Priority areas relating to the built environment highlighted and described in brief.
BSRIA HVAC Market Watch - May 2025 Edition
Heat Pump Market Outlook: Policy, Performance & Refrigerant Trends for 2025–2028.
Committing to EDI in construction with CIOB
Built Environment professional bodies deepen commitment to EDI with two new signatories: CIAT and CICES.
Government Grenfell progress report at a glance
Line by line recomendation overview, with links to more details.
An engaging and lively review of his professional life.
Sustainable heating for listed buildings
A problem that needs to be approached intelligently.
50th Golden anniversary ECA Edmundson apprentice award
Deadline for entries has been extended to Friday 27 June, so don't miss out!
CIAT at the London Festival of Architecture
Designing for Everyone: Breaking Barriers in Inclusive Architecture.
Mixed reactions to apprenticeship and skills reform 2025
A 'welcome shift' for some and a 'backwards step' for others.