Optical smoke alarm
The Technical Handbook – Domestic, published by Scottish Ministers to provide guidance on the building regulations suggests that there are 4 main types of fire detector used in dwellings:
- Optical smoke alarms.
- Ionisation smoke alarms.
- Multi sensor alarms.
- Heat alarms.
It is important that the right type of fire detector for different situations, as false alarms can result in the occupants disabling the fire detection and fire alarm system.
The most common causes of a false alarm are:
Optical smoke alarms detect the scattering or absorption of light within the detector chamber. They are more sensitive to slow smouldering fires such as fires involving soft furnishings and bedding.
A likely source of this type of fire is in a principal habitable room (a frequently used room by the occupants of a dwelling for general daytime living purposes) from the careless disposal of smoking materials. Polyurethane foam found in some furnishings may ignite and begin to smoulder producing large particles of smoke. Because of this, optical smoke alarms are recommended in principal habitable rooms. However if the room is used by a heavy smoker, this could give rise to some false alarms from tobacco smoke.
As optical smoke alarms are less sensitive from fumes caused by toasting bread or frying or grilling food, they are also recommended where a principal habitable room is open plan with a kitchen, and in hallways and stairwells adjacent to kitchens, to reduce the amount of unwanted alarms from cooking fumes. Most unwanted alarms occur during cooking.
Optical smoke alarms should conform to BS EN 14604: 2005 Smoke Alarm Devices.
Characterising smoke from modern materials and evaluating smoke detectors was written by Raman Chagger and published by BRE in 2014 states:
Optical smoke detectors typically use a smoke scatter chamber, which contains an LED source with a collimated lens that produces a beam. A photodiode is located at an angle to the beam. As smoke particles enter the chamber they interrupt the beam and the light is scattered and detected by the photodiode. This results in a voltage that can be used to determine an alarm condition. Optical detectors respond to smouldering fires very quickly, as the larger particles generated cause more scattering. Optical scatter chambers are less sensitive to small particles – and become progressively less sensitive as the smoke particle size approaches the LED wavelength used. Therefore optical smoke detectors are slower at detecting the small smoke particles generated from flaming fires. These detectors are less likely to produce false alarms from cooking fumes and steam than ionisation detectors. |
Ref: https://files.bregroup.com/research/Test-Fires-Characterisation_2014-November.pdf
[edit] Related articles on Designing Buildings Wiki
- Carbon monoxide detector.
- Characterising smoke from modern materials and evaluating smoke detectors.
- Domestic smoke alarms DG525.
- Fire detection and alarm system.
- Fire detector.
- Fire fatalities in Scotland.
- Heat alarm.
- Ionisation smoke alarm.
- Multi-sensor alarm.
- New requirements for fire detection and alarm network systems IP 12 13.
- Over £1 billion lost every year due to false alarms.
- Smoke detector.
- The causes of false fire alarms in buildings.
- The role of codes, standards and approvals in delivering fire safety.
Featured articles and news
Professional practical experience for Architects in training
The long process to transform the nature of education and professional practical experience in the Architecture profession following recent reports.
A people-first approach to retrofit
Moving away from the destructive paradigm of fabric-first.
International Electrician Day, 10 June 2025
Celebrating the role of electrical engineers from André-Marie Amperè, today and for the future.
New guide for clients launched at Houses of Parliament
'There has never been a more important time for clients to step up and ...ask the right questions'
The impact of recycled slate tiles
Innovation across the decades.
EPC changes for existing buildings
Changes and their context as the new RdSAP methodology comes into use from 15 June.
Skills England publishes Sector skills needs assessments
Priority areas relating to the built environment highlighted and described in brief.
BSRIA HVAC Market Watch - May 2025 Edition
Heat Pump Market Outlook: Policy, Performance & Refrigerant Trends for 2025–2028.
Committing to EDI in construction with CIOB
Built Environment professional bodies deepen commitment to EDI with two new signatories: CIAT and CICES.
Government Grenfell progress report at a glance
Line by line recomendation overview, with links to more details.
An engaging and lively review of his professional life.
Sustainable heating for listed buildings
A problem that needs to be approached intelligently.
50th Golden anniversary ECA Edmundson apprentice award
Deadline for entries has been extended to Friday 27 June, so don't miss out!
CIAT at the London Festival of Architecture
Designing for Everyone: Breaking Barriers in Inclusive Architecture.
Mixed reactions to apprenticeship and skills reform 2025
A 'welcome shift' for some and a 'backwards step' for others.