Absorption heat pump
Heat pumps transfer heat from a lower temperature source to one of a higher temperature. This is the opposite of the natural flow of heat and is the same process that is used to extract heat from a fridge.
Heat pumps can be used domestically or commercially to provide hot water, space heating, or other applications such as heating swimming pools.
Generally heat pumps work using compression, and are powered by electricity. A refrigerant fluid is run through the lower temperature source. The fluid ‘absorbs’ heat and boils, even at temperatures below 0° C. The resulting gas is then compressed, which increases its temperature further. The gas is passed into heat exchanger coils, where it condenses, releasing its latent heat. The process then repeats.
Absorption heat pumps work on a similar basis, with a refrigerant that boils at low temperature and pressure, however, in this case, the refrigerant gas (generally ammonia) is then absorbed in a solution (the ‘absorber’, generally water) which is then heated in the ‘generator’ so that the refrigerant evaporates again, but this time at a higher pressure and temperature. It is then condensed through a heat exchanger, heating ‘cool’ return water from the building, and the process then begins again.
The heat source is generally gas-fuelled and so they can also be referred to as a gas absorption heat pump (GAHP). This process is more efficient than a traditional gas-powered boiler.
Other heat sources can be used, such as combined heat and power plant (CHP), solar heated water, (although this requires specialist flat plate collectors that raise the temperature of the water above that normally required), geothermal heat, district heat networks and so on.
Absorption heat pumps are most efficient when supplying low-temperature hot water, such as for underfloor heating. They may be used in combination with conventional boilers to produce higher-temperature water.
Unlike some refrigerants used in compression heat pumps, ammonia is not an ozone depleting gas or a global warming gas. However it is flammable and toxic, and so units are generally hermetically sealed rather than engineered systems and are located outside.
Absorption chillers and absorption refrigerators work on the same principal as absorption heat pumps, but with the flow of heat reversed, so that heat is absorbed from the interior and rejected to the exterior.
[edit] Related articles on Designing Buildings
- Absorption refrigeration.
- Air handling unit.
- Air source heat pumps.
- BSRIA domestic hot water heat pumps testing.
- Coefficient of Performance CoP.
- Dynamic thermal modelling of closed loop geothermal heat pump systems.
- Earth-to-air heat exchangers.
- Exhaust air heat pump.
- Gas absorption heat pump.
- Geothermal pile foundations.
- Ground energy options.
- Ground source heat pumps.
- Heat pump.
- Renewable energy sources: how they work and what they deliver: Part 3: Electrically driven heat pumps DG 532 3.
- Room-based heat pumps.
- Solar-assisted heat pump.
- Solar thermal heating.
- Water source heat pumps.
Featured articles and news
The benefits of engaging with insulation manufacturers
When considering ground floor constructions.
Lighting Industry endorses Blueprint for Electrification
The Lighting Industry Association fully supports the ECA Blueprint as a timely, urgent call to action.
BSRIA Sentinel Clerk of Works Training Case Study
Strengthening expertise to enhance service delivery with integrated cutting-edge industry knowledge.
Impact report from the Supply Chain Sustainability School
Free sustainability skills, training and support delivered to thousands of UK companies to help cut carbon.
The Building Safety Forum at the Installershow 2025
With speakers confirmed for 24 June as part of Building Safety Week.
The UK’s largest air pollution campaign.
Future Homes Standard, now includes solar, but what else?
Will the new standard, due to in the Autumn, go far enough in terms of performance ?
BSRIA Briefing: Cleaner Air, Better tomorrow
A look back at issues relating to inside and outside air quality, discussed during the BSRIA briefing in 2023.
Restoring Abbotsford's hothouse
Bringing the writer Walter Scott's garden to life.
Reflections on the spending review with CIAT.
Retired firefighter cycles world to raise Grenfell funds
Leaving on 14 June 2025 Stephen will raise money for youth and schools through the Grenfell Foundation.
Key points for construction at a glance with industry reactions.
Functionality, visibility and sustainability
The simpler approach to specification.
Architects, architecture, buildings, and inspiration in film
The close ties between makers and the movies, with our long list of suggested viewing.
SELECT three-point plan for action issued to MSPs
Call for Scottish regulation, green skills and recognition of electrotechnical industry as part of a manifesto for Scottish Parliamentary elections.
UCEM becomes the University of the Built Environment
Major milestone in its 106-year history, follows recent merger with London School of Architecture (LSE).
Professional practical experience for Architects in training
The long process to transform the nature of education and professional practical experience in the Architecture profession following recent reports.