Breather membranes for buildings
Damp in buildings can cause a number of serious problems, such as:
- Damp patches.
- Mould growth, mildew, salts, staining and ‘tide marks’.
- Damage to surface finishes.
- Corrosion and decay of building fabric.
- Slip hazards.
- Frost damage.
- Poor performance of insulation.
- Damage to equipment, or electrical failure.
The most common causes of persistent damp in buildings are:
- Surface condensation.
- Interstitial condensation (condensation within the fabric of a building's construction, either on the surfaces of components that make up the fabric, or sometimes within the components themselves).
- Penetrating damp.
- Rising damp.
Breather membranes (or breathable membranes) are water resistant but vapour permeable. Typically they are used within external wall and roof constructions where the external cladding may not be completely water-tight or moisture resistant, such as in tiled roofs or framed wall constructions.
The membrane is located on the cold side of insulation and prevents moisture (as well as snow, wind, and contaminants such as dust) that may have been driven through the external cladding, from penetrating further into the structure. However, their air-permeability allows the structure to be ventilated, avoiding the build-up of interstitial condensation.
Any moisture that forms on the outside face of the membrane should be able to vent or drain to the outside.
Breather membranes can also improve the thermal efficiency of a building’s external envelope and can provide temporary protection from the weather during construction or repair works.
Generally, breathable membranes for wall constructions do not have to be as high a specification as those in roof constructions. In roofs, breathable membranes are required to resist wind uplift so that tiles are not dislodged by movement of the membrane.
In framed wall constructions, breathable membranes may sometimes be fitted during the manufacturing process, off site. Typically, wall constructions will also include a vapour barrier, on the warm side of insulation which prevents humid air from inside the building being driven to a point in the wall structure where it reaches its dew-point temperature and moisture condenses.
In roof constructions, breathable membranes may be supported or unsupported. The channel between fixings can be used to drain moisture to the eaves. Some breathable membranes have sufficient air-permeability that eaves and ridge ventilation of the roof is not necessary.
[edit] Related articles on Designing Buildings
Featured articles and news
Renovating Union Chain Bridge.
AI tools for planning, design, construction and management
A long, continually expanding list, any more to add?
Robots in the construction industry
From cultural characterisations to construction sites.
Empowering construction with AI integration
New horizons with a human touch.
Key AI related terms to be aware of
With explanations from the UK government.
A Better Hiring Toolkit for construction
Tooling up to hire under best practice standards in the sector.
Recharging Electrical Skills in Wales
Step by step collaborative solutions.
Ireland budget announcement 2025
CIOB responds with positivity, criticism and clarity.
The continued ISG fall out, where to go?
Support for ISG contractors, companies and employees.
New HES national centre for traditional building retrofit
Announced as HES publishes survey results which reveal strong support for retrofit.
Retrofit of Buildings, a CIOB Technical Publication
Expected to become one of the largest activities in the global construction industry.
Scope determination appeals and the Building Safety Act
Process explained following release of appeals guidance.
The ECA industry focus video channel
Keeping update with the industry session by session.
Over 25 recorded informations sessions freely available.
AT Awards 2024 ceremony East London October 25th.
Revisiting the AT community at the 2023 awards evening.
The Community Housing Fund and built affordable homes
CLTN reviews the impact of the Fund and calls for extension.
Putting new life into a city with a 1900 year history.
BSRIA Briefing 2024: Sustainable Futures speakers
Redefining Retrofit for Net Zero Living 22 Nov.
Comments
It would be great to have a breakdown of the different types of breather membranes, in particular the difference between microporous and monolithic membranes.