Textile-reinforced mortars TRM
Contents |
[edit] Introduction
Carbon fibre material has a wide range of applications, as it can be formed in various densities, shapes and sizes. Carbon fibre is often shaped into tubing, fabric, and cloth and can be custom-formed into any number of composite parts and pieces.
Carbon fibre sheets have historically been used to strengthen structurally deficient concrete structures. However, these sheets are typically applied with adhesives that can become dangerous in the event of fire. In additions, the sheets do not work well if applied on wet surfaces (they may even fall from the structure if they become too wet).
Textile-reinforced mortars (TRM), also referred to as fibre-reinforced cementitious mortars (FRCM)) or textile-reinforced concrete (TRC), are produced as a type of textile woven from carbon or other advanced fibres with an open-mesh configuration. This is then embedded in cement- or hydraulic-lime-based mortars.
Since 2000, textile-reinforced mortars have been explored as a potential replacement for fibre reinforced polymer (FRP) methods of reinforcing structurally deficient concrete. Generally, TRM has demonstrated its ability to strengthen concrete and masonry structures in a manner that offers protection from seismic activity. With the addition of thermal insulation materials, TRM may prove to be a valuable for building envelope energy retrofit purposes.
[edit] KICT TRM method
In 2018, researchers from the Korea Institute of Civil Engineering and Building Technology (KICT) led by Dr. Hyeong-Yeol Kim began developing a structural engineering method that combined a carbon fibre grid with cement mortar to create a new type of textile-reinforced mortar panel. In 2020, a patent for the technique was granted.
[edit] Thin panels
The KICT method produces thin precast panels made from a carbon fibre grid and a layer of cement mortar. It can then be applied as cast-in-place construction.
The thin panels (approximately 20 mm-thick) are put on the surface of the structure. The space between the panel and the existing surface is filled with cement grout which acts as an adhesive.
The carbon fibres and the cement mortar in the panels are highly resistant to fire and are generally considered noncombustible materials. These panels can be applied during any weather conditions and will stay in place even if water is trapped between the surfaces.
[edit] Test results
Tests conducted by the research team indicated that the failure load of concrete structures strengthened with the TRM panel increased by at least 1.5 times.
The durability test and analysis of the TRM panel indicates that the lifespan of the panel is more than 100 years. This increase can be attributed to the cement mortar, developed by KICT, which contains 50% ground granulated blast furnace slag, an industrial by product generated at ironworks.
[edit] Applications
This method of construction using TRM panels may be suitable for building facades or repairs. It could also be used as strengthening materials for other applications, such as highway facilities, car parks or other structures where there is exposure to extreme weather.
[edit] Production
The cement mortar used in the TRM panels is generally less expensive than conventional mortar. This may reduce construction costs by about 40% compared to existing carbon sheet attachment methods.
[edit] Related articles on Designing Buildings Wiki
- Carbon fibre.
- Concrete.
- Fire in buildings.
- Mortar.
- Polymer concrete.
- Reinforced concrete.
- Types of mortar.
[edit] External resources
Featured articles and news
Reform of the fire engineering profession
Fire Engineers Advisory Panel: Authoritative Statement, reactions and next steps.
Restoration and renewal of the Palace of Westminster
A complex project of cultural significance from full decant to EMI, opportunities and a potential a way forward.
Apprenticeships and the responsibility we share
Perspectives from the CIOB President as National Apprentice Week comes to a close.
The first line of defence against rain, wind and snow.
Building Safety recap January, 2026
What we missed at the end of last year, and at the start of this...
National Apprenticeship Week 2026, 9-15 Feb
Shining a light on the positive impacts for businesses, their apprentices and the wider economy alike.
Applications and benefits of acoustic flooring
From commercial to retail.
From solid to sprung and ribbed to raised.
Strengthening industry collaboration in Hong Kong
Hong Kong Institute of Construction and The Chartered Institute of Building sign Memorandum of Understanding.
A detailed description from the experts at Cornish Lime.
IHBC planning for growth with corporate plan development
Grow with the Institute by volunteering and CP25 consultation.
Connecting ambition and action for designers and specifiers.
Electrical skills gap deepens as apprenticeship starts fall despite surging demand says ECA.
Built environment bodies deepen joint action on EDI
B.E.Inclusive initiative agree next phase of joint equity, diversity and inclusion (EDI) action plan.
Recognising culture as key to sustainable economic growth
Creative UK Provocation paper: Culture as Growth Infrastructure.
Futurebuild and UK Construction Week London Unite
Creating the UK’s Built Environment Super Event and over 25 other key partnerships.
Welsh and Scottish 2026 elections
Manifestos for the built environment for upcoming same May day elections.
Advancing BIM education with a competency framework
“We don’t need people who can just draw in 3D. We need people who can think in data.”























