Reverberation in buildings
Contents |
[edit] Introduction
Sound is caused by vibrations which transmit through a medium such as air and reach the ear or some other form of detecting device. Sound intensity is measured in Decibels (dB). This is a logarithmic scale in which an increase of 10 dB gives an apparent doubling of loudness.
Approved document E, Resistance to the passage of sound defines 'Reverberation' as the persistence of sound in a space after a sound source has been stopped. Reverberation time is the time, in seconds, taken for the sound to decay by 60dB after a sound source has been stopped.
The reverberation time of a room is linked to the the surfaces that enclose it and the volume of the room by the Sabine equation:
RT = Volume x 0.161 / Total Acoustic Absorption
Image: To control reverberation time, acoustic absorption is used.
Room acoustics / reverberation affects the way a space sounds. A high reverberation time can make a room sound loud and noisy. Speech intelligibility is also a function of reverberation, a high reverberation time causes speech to sound muffled and muddy. Rooms designed for speech therefore typically have a low reverberation time: ≤1 second. A high reverberation time can enhance a music hall by adding richness, depth and warmth to music. A higher level of reverberation within a concert hall is therefore critical.
The illustration below provides indicative reverberation times for a range of building types and room volumes.
[edit] Acoustic properties of materials
To control reverberation time, acoustic absorption is used. Absorbent materials conventionally take two forms; fibrous materials or open-celled foam. Fibrous materials absorb sound as sound waves force the fibres to bend and this bending of the fibres generates heat. The conversion of acoustic energy into heat energy results in the sound effectively being absorbed. In the case of open-celled foam, the air movement resulting from sound waves pushes air particles through the narrow passages which in turn generate a viscous loss along with heat.
Architecturally, fibrous materials and open celled foams are not always considered attractive or robust. It is common therefore to cover these materials with an acoustically transparent finish such as a tissue, cloth or slatted wood, or with perforated materials such as wood, metal, plasterboard and so on.
The thickness of a given material along with properties such as its fibrousity governs its acoustic performance. Finishes within a space are defined in terms of their absorption coefficient. This is a number between 0.0 (100% reflective) for example stone, tiles or concrete and 1.0 (100% absorbent), for example high performance acoustic ceiling tiles, slabs of mineral wool, etc. Products such as carpets typically have an absorption coefficient between 0.1 and 0.3 depending on their thickness. Perforated plasterboard generally provides around 0.6 to 0.7.
It is also common to classify absorbent materials in categories, A to E, where A is highly absorbent and E is almost fully reflective.
This article was created by --MACH Acoustics 11:04, 28 November 2013 (UTC)
[edit] Related articles on Designing Buildings
- Airborne sound.
- Approved Document E.
- Building acoustics.
- Building Bulletin 93: acoustic design of schools.
- Decibel.
- Flanking sound.
- Impact sound.
- Noise nuisance.
- Robust details certification scheme.
- Room acoustics.
- Sound insulation.
- Sound absorption.
- Sound frequency.
- Sound insulation testing.
- Sound power.
- Sound v noise.
- Noise nuisance.
[edit] External references
- MACH Acoustics: Room acoustics and reverberation.
Featured articles and news
Do you take the lead in a circular construction economy?
Help us develop and expand this wiki as a resource for academia and industry alike.
Warm Homes Plan Workforce Taskforce
Risks of undermining UK’s energy transition due to lack of electrotechnical industry representation, says ECA.
Cost Optimal Domestic Electrification CODE
Modelling retrofits only on costs that directly impact the consumer: upfront cost of equipment, energy costs and maintenance costs.
The Warm Homes Plan details released
What's new and what is not, with industry reactions.
Could AI and VR cause an increase the value of heritage?
The Orange book: 2026 Amendment 4 to BS 7671:2018
ECA welcomes IET and BSI content sign off.
How neural technologies could transform the design future
Enhancing legacy parametric engines, offering novel ways to explore solutions and generate geometry.
Key AI related terms to be aware of
With explanations from the UK government and other bodies.
From QS to further education teacher
Applying real world skills with the next generation.
A guide on how children can use LEGO to mirror real engineering processes.
Data infrastructure for next-generation materials science
Research Data Express to automate data processing and create AI-ready datasets for materials research.
Wired for the Future with ECA; powering skills and progress
ECA South Wales Business Day 2025, a day to remember.
AI for the conservation professional
A level of sophistication previously reserved for science fiction.
Biomass harvested in cycles of less than ten years.
An interview with the new CIAT President
Usman Yaqub BSc (Hons) PCIAT MFPWS.
Cost benefit model report of building safety regime in Wales
Proposed policy option costs for design and construction stage of the new building safety regime in Wales.
Do you receive our free biweekly newsletter?
If not you can sign up to receive it in your mailbox here.
























