Airborne sound
Sound is caused by vibrations which transmit through a medium and reach the ear or some other form of detecting device. Sound is measured in loudness (decibels (dB)) and frequency (Hertz (Hz)).
Airborne sound (or airborne noise) is sound that is transmitted through the air.
Typically, airborne sound might be generated by:
This is as opposed to structure-borne sound that results from an impact on or a continuous vibration against a part of a building fabric resulting in sound being radiated from an adjacent vibrating surface. An example of structure-borne sound is footsteps of a floor being heard in a room below.
Whilst they are sometimes considered to be separate phenomena, airborne and structure-borne sound are related, in that airborne sound can cause structure-borne sound and vice versa. Airborne sound may cause an element of the building fabric to vibrate when it comes into contact with a surface, and structural vibrations may radiate from a surface, generating airborne sound.
Poor detailing or poor standards of workmanship can result in airborne sound transmitting directly between spaces, for example through gaps around the edge of doors, and may result in flanking sound, where sound travels around a separating element, even though the element itself might provide very good acoustic insulation. Even very small gaps can cause a significant increase in the transmission of airborne sound.
Problems can also occur where doors, windows or other openings face onto ‘noisy’ spaces, such as a circulation space, a busy road or a school playground. If this deters occupants from leaving elements of the building open, this can affect the performance of natural ventilation strategies.
The amount of airborne sound in a space can be reduced by acoustic absorption, which reduces the amount of sound reflecting back into the space from the surfaces enclosing it, by acoustic insulation which reduces the amount or sound transmitting into the space from an adjacent space through the building fabric and by the elimination of gaps that might permit direct transmission.
Airborne sound transmission can be tested by placing a loudspeaker in a space to generate sound at a range of frequencies, and detecting any resulting sound in an adjacent space with a microphone. The difference is then calculated and adjustment made to take into account the sound absorption characteristics of the ‘receiving’ space. Tests are typically carried out in the range from 125 Hz to 4000 Hz.
Building Regulations Approved Document E - 'Resistance to the passage of sound' sets minimum standards for airborne sound insulation.
[edit] Related articles on Designing Buildings Wiki
- Acoustics in the workplace.
- Approved Document E.
- Audio frequency.
- Building acoustics.
- Building Bulletin 93: acoustic design of schools.
- Decibel.
- Impact sound.
- Flanking sound.
- Noise nuisance.
- Part E compliance.
- Pre-completion sound testing.
- Reverberation time.
- Robust details certification scheme.
- Room acoustics.
- Sound absorption.
- Sound frequency.
- Sound insulation.
- Sound power.
- Sound reduction index (SRI).
- Sound v noise.
- Structure-borne sound.
- Suitable insulation can help preserve the golden sound of silence.
Featured articles and news
Heat Pump demand rises by one quarter.
As energy prices jump up in cost.
With people in the UK from Ukraine.
Industry leader Steve Murray takes on role.
An abundant and versatile building material.
How overheating complicates ending gas in the UK.
600,000 heat pump installations targeted per year by 2028.
Cost planning, control and related articles on DB.
Helping prevent those unwanted outcomes.
ICE debate Public transport - post pandemic.
How has transport changed due to Covid-19 ?
Cross-ventilation in buildings. Do you have it ?
Will you need it ? after June 15 and the new Part O ?
Share your knowledge with the industry.
Create an account and write the first of many articles.
The green jobs delivery group.
CIAT commentary after the first meeting.
Liverpool's world heritage site status
Who is to blame?
Research recommends focussing on portfolio success rather than project success.
ICE and BSI launch revised PAS 128 standard.
The revised standard for mapping underground utilities.
Launching the UK net zero carbon buildings standard.
Cross-industry steering group seeks support in delivery.