Airborne sound
Sound is caused by vibrations which transmit through a medium and reach the ear or some other form of detecting device. Sound is measured in loudness (decibels (dB)) and frequency (Hertz (Hz)).
Airborne sound (or airborne noise) is sound that is transmitted through the air.
Typically, airborne sound might be generated by:
This is as opposed to structure-borne sound that results from an impact on or a continuous vibration against a part of a building fabric resulting in sound being radiated from an adjacent vibrating surface. An example of structure-borne sound is footsteps of a floor being heard in a room below.
Whilst they are sometimes considered to be separate phenomena, airborne and structure-borne sound are related, in that airborne sound can cause structure-borne sound and vice versa. Airborne sound may cause an element of the building fabric to vibrate when it encounters a surface, and structural vibrations may radiate from a surface, generating airborne sound.
Poor detailing or poor standards of workmanship can result in airborne sound transmitting directly between spaces, for example through gaps around the edge of doors, and may result in flanking sound, where sound travels around a separating element, even though the element itself might provide exceptionally good acoustic insulation. Even exceedingly small gaps can cause a significant increase in the transmission of airborne sound.
Problems can also occur where doors, windows, or other openings face onto ‘noisy’ spaces, such as a circulation space, a busy road, or a school playground. If this deters occupants from leaving elements of the building open, this can affect the performance of natural ventilation strategies.
The amount of airborne sound in a space can be reduced by acoustic absorption, which reduces the amount of sound reflecting back into the space from the surfaces enclosing it, by acoustic insulation which reduces the amount or sound transmitting into the space from an adjacent space through the building fabric and by the elimination of gaps that might permit direct transmission.
Airborne sound transmission can be tested by placing a loudspeaker in a space to generate sound at a range of frequencies, and detecting any resulting sound in an adjacent space with a microphone. The difference is then calculated and adjustment made to take into account the sound absorption characteristics of the ‘receiving’ space. Tests are typically carried out in the range from 125 Hz to 4000 Hz.
Building Regulations Approved Document E - 'Resistance to the passage of sound' sets minimum standards for airborne sound insulation.
[edit] Related articles on Designing Buildings Wiki
- Acoustics in the workplace.
- Approved Document E.
- Audio frequency.
- Building acoustics.
- Building Bulletin 93: acoustic design of schools.
- Decibel.
- Impact sound.
- Flanking sound.
- Noise nuisance.
- Part E compliance.
- Pre-completion sound testing.
- Reverberation time.
- Robust details certification scheme.
- Room acoustics.
- Sound absorption.
- Sound frequency.
- Sound insulation.
- Sound power.
- Sound reduction index (SRI).
- Sound v noise.
- Structure-borne sound.
- Suitable insulation can help preserve the golden sound of silence.
Featured articles and news
Industry Competence Steering Group restructure
ICSG transitions to the Industry Competence Committee (ICC) under the Building Safety Regulator (BSR).
Principal Contractor Competency Certification Scheme
CIOB PCCCS competence framework for Principal Contractors.
The CIAT Principal Designer register
Issues explained via a series of FAQs.
Conservation in the age of the fourth (digital) industrial revolution.
Shaping the future of heritage
Embracing the evolution of economic thinking.
Ministers to unleash biggest building boom in half a century
50 major infrastructure projects, 5 billion for housing and 1.5 million homes.
RIBA Principal Designer Practice Note published
With key descriptions, best practice examples and FAQs, with supporting template resources.
Electrical businesses brace for project delays in 2025
BEB survey reveals over half worried about impact of delays.
Accelerating the remediation of buildings with unsafe cladding in England
The government publishes its Remediation Acceleration Plan.
Airtightness in raised access plenum floors
New testing guidance from BSRIA out now.
Picking up the hard hat on site or not
Common factors preventing workers using head protection and how to solve them.
Building trust with customers through endorsed trades
Commitment to quality demonstrated through government endorsed scheme.
New guidance for preparing structural submissions for Gateways 2 and 3
Published by the The Institution of Structural Engineers.
CIOB launches global mental health survey
To address the silent mental health crisis in construction.
New categories in sustainability, health and safety, and emerging talent.
Key takeaways from the BSRIA Briefing 2024
Not just waiting for Net Zero, but driving it.