Geophysical survey
Contents |
[edit] Introduction
A geophysical survey is a cost-effective, non-intrusive and relatively efficient means of detecting and assessing sub-surface features. Geophysical surveys are capable of covering large areas at low cost by taking readings between widely spaced borings to detect and locate changes in sub-surface materials or stratification. They are useful for extended sites where conditions are generally favourable and are widely-used in the support of planning applications.
There are a wide variety of geophysical techniques available for measuring different physical properties, with different levels of sensitivity to different types of feature. The site-specific conditions and the type and composition of likely features will determine the suitability of a particular technique.
The most commonly-used geophysical survey techniques:
- Electrical resistivity.
- Seismic refraction and reflection.
- Magnetometry.
- Ground-penetrating radar (GPR).
[edit] Electrical resistivity
Electrical resistivity surveys detect the difference in electrical resistance between different rock or soil types. They are able to detect features such as swallow holes or underground cavities, and analysis of the results can establish the thicknesses and depths of the various sub-strata.
The method involves passing a small electrical current through equally-spaced electrodes on the surface. By varying the electrode centres, the penetration depth can be varied. The recorded differences in relative resistance are used to map features such as voids, ditches, pits and structural features. This is useful in situations where magnetometry is unsuitable, however, it can be more time-consuming and problems can occur if conductors such as pipes and cables are present, as these can make the survey results unreliable.
[edit] Seismic refraction and reflection
Seismic refraction and reflection involves propagating vibrations with a ‘sledgehammer’ and measuring the time taken and the distance covered by the shock waves. Shallow exploration tends to favour the refraction method, whereby seismometers are spaced at increasing distances from the vibration source with the shock waves plotted against a time scale.
The reflection method is suited to exploration depths of greater than 150 m. Both methods are useful for determining the change in soil type and for surveying sites for tunnels, dams and harbour works.
[edit] Magnetometry
Magnetometry is based on measuring the variations in intensity and direction of the earth’s magnetic field and is capable of providing a rapid, detailed assessment of a large area. Anomalies in the vertical component of the earth’s magnetic field can be detected, which can identify and locate underground cavities, building remains, pits, and buried objects such as cables and pipelines.
[edit] Ground-penetrating radar (GPR)
A radar signal is directed at the ground, and the time take for reflection to reach the detector can be used to map the depth of sub-surface features. It can be used for deep objects and can identify small features, but is generally best suited to good ground conditions.
[edit] Related articles on Designing Buildings Wiki
- 3D laser survey.
- Alluvium.
- Condition survey.
- Desk study.
- Ecological survey for design and construction.
- Environmental Impact Assessment.
- Geotechnical engineering.
- Ground conditions.
- Ground improvement techniques.
- Ground investigation.
- In situ testing of soils.
- Interferometric synthetic aperture radar InSAR.
- Interview with Elly Ball, co-founder Get Kids into Survey.
- Land surveying.
- Minerals surveyor.
- Preliminary ecological appraisal.
- Radar.
- Soil report.
- Soil survey.
- Subsoil.
- Surveying instruments.
- Testing construction materials.
- Testing pile foundations.
- Thermographic survey of buildings.
- Topsoil.
- Trial pit.
- Types of soil.
- Using satellite imagery to monitor movements in megaprojects.
- Walkover survey.
[edit] External references
- ‘Introduction to Civil Engineering Construction’ (3rd ed.), HOLMES, R., The College of Estate Management (1995)
Featured articles and news
Classroom electrician courses a 'waste of money'
Say experts from the Electrical Contractors’ Association.
Wellbeing in Buildings TG 10/2025
BSRIA topic guide updates.
With brief background and WELL v2™.
From studies, to books to a new project, with founder Emma Walshaw.
Types of drawings for building design
Still one of the most popular articles the A-Z of drawings.
Who, or What Does the Building Safety Act Apply To?
From compliance to competence in brief.
The remarkable story of a Highland architect.
Commissioning Responsibilities Framework BG 88/2025
BSRIA guidance on establishing clear roles and responsibilities for commissioning tasks.
An architectural movement to love or hate.
Don’t take British stone for granted
It won’t survive on supplying the heritage sector alone.
The Constructing Excellence Value Toolkit
Driving value-based decision making in construction.
Meet CIOB event in Northern Ireland
Inspiring the next generation of construction talent.
Reasons for using MVHR systems
6 reasons for a whole-house approach to ventilation.
Supplementary Planning Documents, a reminder
As used by the City of London to introduce a Retrofit first policy.
The what, how, why and when of deposit return schemes
Circular economy steps for plastic bottles and cans in England and Northern Ireland draws.
Join forces and share Building Safety knowledge in 2025
Why and how to contribute to the Building Safety Wiki.
Reporting on Payment Practices and Performance Regs
Approved amendment coming into effect 1 March 2025.