Electric lock
An electric lock makes use of an electric current to operate a mechanism to either hold shut or release a securing system.
Very often they are encountered in or around buildings as part of access control systems.
Electric locks may be split into two basic groups: those where the physical securing is achieved by use of a magnetic holding force, and those where an electric current is used to physically move a bolt or latch, usually via a magnetic solenoid or motor action.
Magnetic locks or ‘maglocks’ are the most common type used in access control systems. They work on the principle that when an electric current is applied to an electromagnet, its magnetising force attracts and holds firmly a magnetic material such as iron or steel, and when the electric current is stopped, the magnetic force ceases.
The usual arrangement for a maglock on a door or gate consists of a large electromagnet which is fixed to the door or gate frame, and an accompanying steel plate, or armature, which is secured to the door or gate itself.
When powered, the door or gate is held securely to the electromagnet, effectively preventing it from being opened – even with force.
Another form of electric lock is where a solenoid mechanically operates a bolt into its keep, or directly operates the keep itself. The keep is the part of the lock on the door frame that the bolt engages with.
A solenoid is itself a simple electromagnet that converts electrical current into mechanical movement.
Controls such as an access control system can energise and de-energise electric locks. Such controls may often be activated via PIN code readers, proximity sensors or fobs, key code pads or remotely via manual switching in a secured area of the building.
Often, such access control systems need very careful design considerations with regards to how the control is handled during an emergency, when the door or gate might be needed for safety or escape. In some instances, designers may elelct to link such access control systems to the building’s safety systems such as fire alarms.
In all cases with electric locking systems it is essential to weigh up the need for absolute security on one hand, against safety egress and building evacuation logistics on the other.
It should also be noted that with any locking system, overall security will always be governed and limited by the strength of the door or gate and the frame into which it is secured.
--ECA
[edit] Related articles on Designing Buildings Wiki
- Access control.
- CCTV.
- Commercial security systems.
- Digital door lock market.
- ECA articles.
- Electric motor.
- Electrical energy.
- Electrical power.
- Entry control.
- Home security solutions market.
- Outbuildings security.
- Perimeter security.
- Proximity access control system.
- Security and the built environment.
- Security glazing.
- Types of alarm.
- Types of door.
- Types of lock.
- Visitor door entry system.
Featured articles and news
Heritage on the edge?
Prioritising tax considerations.
Reviewing the Double Diamond Design model
The four D creative process: discover, define, develop and deliver.
National Cyber Security Centre initiative is announced.
The impact of COVID-19 on global HVAC&R markets
Reviewing trends and projections.
Legislation will establish initiatives to move towards net zero.
Status determination statement
How to document contractor employment status.
Social distancing goes high tech
Tech tools to help manage people and space post-pandemic.
Eclectic Edwardian architecture
A style that ranges from mock Tudor to arts and crafts to the 'Wrenaissance'.
Free guide from Secured by Design.
Building Back Better: Circularity
BREEAM strategy for sustainability and the circular economy.
Free tool to improve the construction programming process.
Building services verification
Are buildings doing what they're supposed to be doing?
Cities with quick access to everything by foot or bike.