Alternating current and direct current
![]() |
The sinusoidal curve that represents the positive and negative phases of AC current. |
Contents |
[edit] Introduction
An electric current is a flow of charge along a conductor, such as a copper wire. When it flows in one direction it is called direct current (DC). When it reverses direction periodically it is termed an alternating current (AC).
AC current is generally used to power homes and businesses, and is also present when audio and radio signals are carried on electrical wires. DC current is typical of batteries that power flashlights and other home appliances and is also used in some industrial applications.
Because AC current reverses direction periodically, it can be characterised by a sinusoidal waveform where the half periods above the x-axis represent the positive phase of the current and the half periods below the x-axis represent the negative phase.
AC current operates in the following way: it will start from a position of zero, build up to its maximum value (top of the positive peak on the sinusoidal curve), reverse to zero, continue to the maximum in the opposite direction (negative, below the x-axis) then reverse back to zero, upon which the cycle begins again. The number of these cycles performed per second is called the frequency and is measured in hertz (Hz).
Domestic and commercial power in the UK and other countries is typically of low frequency (50-60Hz). Far higher frequencies are encountered in other applications such as television (100,000,000 cycles/second (100 megahertz (or 100MHz) where 1MHz is one million cycles/second)). Even higher frequencies of several thousand megahertz are used in microwave and radar applications, while in mobile phones they may be in the order of around 1,000MHz (one thousand million hertz or 1 gigahertz (GHz).
Many electronic devices contain semi-conductors which require low-voltage DC. This means that such devices must convert high voltage AC to low voltage DC. This is usually achieved by the plug-in power plug that is supplied with the device.
[edit] Some advantages of AC over DC
AC current offers numerous benefits over DC. Typically, these include:
- AC can be relatively easily and economically stepped up or down with a transformer to suit the application. DC cannot be wired through a transformer.
- Because it can be stepped up (and down), AC can be increased to high voltage levels for transmission over large distances, then stepped down to safer levels for consumer use.
- High voltages can be generated in AC. This is more difficult with DC.
- Because of the high voltages that can be generated, AC can be transmitted over long distances.
- Long-range transmission results in relatively low energy losses resulting from resistance.
- AC is cheaper to generate than DC.
- AC can be easily converted to DC if required.
[edit] DC networks
The Energy Saving Trust estimated in 2007 that by 2020, 45% of the electricity consumption in a household would be entertainment, computers and gadgets and LED lighting, all of which are DC-powered. This, in combination with the emergance of DC generation from solar panels, and battery storage, have given rise to the concept of DC (rather than AC) networks.
For more information see: DC electricity networks.
[edit] Related articles on Designing Buildings Wiki
- DC electricity networks.
- Electricity supply.
- Energy consumption.
- Energy storage.
- Fossil fuel.
- Hydroelectricity.
- Micro-grids.
- Microgeneration.
- Oil - a global perspective.
- Power.
- PV inverter.
- Renewable energy.
- Single-phase v three-phase ac current systems.
- Solar photovoltaics.
- The future of UK power generation.
- Types of fuel.
- Watt.
Featured articles and news
Deputy editor of AT, Tim Fraser, discusses the newly formed society with its current chair, Chris Halligan MCIAT.
Barratt Lo-E passivhaus standard homes planned enmasse
With an initial 728 Lo-E homes across two sites and many more planned for the future.
Government urged to uphold Warm Homes commitment
ECA and industry bodies write to Government concerning its 13.2 billion Warm Homes manifesto commitment.
Places of Worship in Britain and Ireland, 1929-1990. Book review.
The emancipation of women in art.
CIOB Construction Manager of the Year 2025
Just one of the winners at the CIOB Awards 2025.
Call for independent National Grenfell oversight mechanism
MHCLG share findings of Building Safety Inquiry in letter to Secretary of State and Minister for Building Safety.
The Architectural Technology Awards
AT Awards now open for this the sixth decade of CIAT.
50th Golden anniversary ECA Edmundson awards
Deadline for submissions Friday 30 May 2025.
The benefits of precast, off-site foundation systems
Top ten benefits of this notable innovation.
Encouraging individuals to take action saving water at home, work, and in their communities.
Takes a community to support mental health and wellbeing
The why of becoming a Mental Health Instructor explained.
Mental health awareness week 13-18 May
The theme is communities, they can provide a sense of belonging, safety, support in hard times, and a sense purpose.
Mental health support on the rise but workers still struggling
CIOB Understanding Mental Health in the Built Environment 2025 shows.
Design and construction material libraries
Material, sample, product or detail libraries a key component of any architectural design practice.
Construction Products Reform Green Paper and Consultation
Still time to respond as consultation closes on 21 May 2025.
Resilient façade systems for smog reduction in Shanghai
A technical approach using computer simulation and analysis of solar radiation, wind patterns, and ventilation.