Roped access for conservation projects
This conservation expert from WallWalkers climbs the Norwich Cathedral spire to conduct restoration work. |
Contents |
[edit] Introduction
Roped access is a technique used by trained professionals to conduct specific tasks at height without the use of scaffolding. Ropes are used to provide access and relay equipment.
[edit] History
Roped access has been used throughout history for building and maintaining structures. It became increasingly sophisticated as buildings became taller.
In the 1980s, roped access technicians began to adopt caving and mountaineering techniques that deployed a security rope as an extra level of safety. This made it possible for users to carry their tools and equipment with them or request tools to be sent to the proper location by way of the other rope system.
[edit] Scaffolding or ropes?
Although scaffolding has gained popularity for work at height, it can be costly, unsightly and potentially damaging to the roof or structure while creating obstructions for pedestrian and vehicular traffic below. There are also some instances where skyscrapers are so tall that scaffolding and platforms are impractical for maintenance, inspection and repair.
Geophysicists and structural engineers work together to survey a historic façade using roped access. |
For modern buildings, roped access can be used for specialist purposes such as window cleaning on skyscrapers. It is also suitable for conservation or renovation tasks on older tall structures where preservation or inspection might be difficult or inconvenient to conduct on scaffolding or other structurally complex systems.
Roped access allows technicians to undertake:
- Maintenance tasks required in difficult to reach or confined places.
- Work that needs to be completed in a timely manner (for both urgency and cost reasons).
- Repair work or research in situations where geophysical factors (such as historic mine works or other structural issues) prohibit the use of scaffolding.
- Projects that require the reduction of environmental, operational and structural impact.
[edit] Case study: Norwich Cathedral
In summer 2020, plans were made to restore the spire and golden weathervane at Norwich Cathedral. More than 900 years old, the cathedral was completed in 1145.
This view of the spire is from the Cloisters of Norwich Cathedral. Like the cathedral itself, these Cloisters are the second largest in England, only surpassed by those at Salisbury Cathedral. |
The cathedral’s first spire of timber and lead was completed in 1297, but was blown down in a storm in 1361. Another timber version was destroyed by lightning in 1463 and was rebuilt using brick faced with stone. It is this third surviving version of the spire that is the focus of the restoration project.
The cathedral is 315 feet (96 meters) high, including the weathervane, making it the second tallest in England after Salisbury Cathedral at 404 feet (123 m). Repair work is also taking place on the golden cockerel weathervane, which dates from 1756.
The spire has gone through many repair projects over the centuries, but the most recent took place in the 1980s. According to the Rev Dr Peter Doll, Canon librarian and Vice Dean of the cathedral, some of the previous restoration work has not maintained its structural integrity over the years.
The work includes repointing joints and replacing loose stone on the spire, replacing rusted iron structures with stainless steel, repairing damaged stonework and regilding the golden weathervane in gold leaf, which was removed in order to undertake the repairs. It is believed that the cockerel has not been taken down since 1963.
The restoration project is being undertaken by a specialty rope access heritage company. The father and son conservation team of Chris and Sam Milford use mountaineering techniques and carefully placed ropes to climb the spire.
Before undertaking the restoration aspect of the project, the Milfords had to scale the spire to set up the special rope system that would be used for the repair work. The system allowed the work to be carried out without the need for scaffolding.
[edit] Related articles on Designing Buildings Wiki
IHBC NewsBlog
Mayor of London and Government announce bold plans to transform Oxford Street
Plans include turning the road into a traffic-free pedestrianised avenue, creating a beautiful public space.
Crystal Palace Subway, for 160th anniversary
The remarkable Grade II* listed Crystal Palace Subway in South London begins a new era following major restoration.
National Trust brings nature back to an area twice the size of Manchester in less than a decade
The National Trust has achieved its aim of creating or restoring 25,000 hectares of priority habitat on its land by 2025.
18th-century hospital in York to become sustainable homes
A former mental health establishment founded by a Quaker in 1792 is to be converted into 120 energy-efficient homes in York.
Context 180 Released - Where Heritage and Nature Meet
The issue includes life, death, Forests, bats, landscapes and much more.
Church architecture awards 2024: now open
The National Churches Trust has announced three awards, all of which are run in partnership with the Ecclesiastical Architects & Surveyors Association (EASA).
The essential sector guide includes officers' updates and a foreword by EH Chair Gerard Lemos.
Historic England opens nominations for the National Blue Plaque Scheme
The scheme is open to nominations to celebrate people from all walks of life.
Striking photos show nature reclaiming brutalist concrete
‘Brutalist Plants’ explores nature’s links to the architectural style characterised by imposing form and exposed concrete.
Purcell’s guidance on RAAC for Listed Buildings in England & Wales
The guidance specifically focuses on Reinforced Autoclaved Aerated Concrete (RAAC) in listed buildings.