Low-e glass
The term ‘low-e glass’ is used to describe glass that has a coating added to one or more of its surfaces to reduce its emissivity.
Emissivity is an indicator of the amount of long-wave infra-red radiation which a surface (such as the façade of a building) will emit to its surroundings. According to Kirchoff's law the emissivity of a surface is equal to its radiant absorptivity at a given temperature and wavelength. It is expressed as a proportion of 1, so if a surface absorbs 40% of the long-wave infra-red radiation incident on its surface, it has an emissivity of 0.4.
All bodies which are hotter than 0°K emit thermal radiation and absorb thermal radiation. In general, the higher the temperature of a body, the lower the average wavelength of the radiation it emits. The range of terrestrial temperatures experienced within the built environment is comparatively ‘cold’ compared to the sun and so they are radiating at a much longer wavelength. This anomaly allows us to distinguish between short-wave solar radiation and long-wave infra-red radiation (terrestrial radiation).
Typically, glass is relatively transparent to short-wave solar radiation, but opaque to long-wave infra-red radiation. This is said to produce a ‘greenhouse effect’, where solar radiation enters a space, and heats it up, but the resulting long-wave infra-red radiation emitted by the hot internal surfaces is unable to escape.
However, glass has a relatively high emissivity. This means that although it does not transmit long-wave infra-red radiation incident on its surface, it does absorb it. This absorbed ‘heat’ is then re-radiated.
Low-e coatings can be used to reduce the effective emissivity of the surface of glass so that it reflects, rather than absorbs, a higher proportion of long-wave infra-red radiation.
In cooler climates this means that long-wave infra-red radiation that builds up inside a building is reflected by the glass back into the space, rather than being absorbed by the glass and then partially re-radiated to the outside. This reduces heat loss and so the need for artificial heating.
In hotter climates, a low-e coating means that long-wave infra-red radiation outside the building is reflected back out of the building, rather than being absorbed by the glass and then partially re-radiated to the inside. This reduces the heat build-up inside the building and so the need for cooling. In hotter climates, a low-e coating might be used in conjunction with solar-control glass to reduce the amount of short-wave solar radiation entering the building.
Low-e coatings can reduce the emissivity of glazing from more than 0.8 to 0.2 or even as low as 0.04. Coatings tend to be either hard ‘pyrolytic’ coatings which are applied to molten glass, or soft ‘sputtered’ coatings, which generally need to be protected within the sealed unit.
[edit] Related articles on Designing Buildings
- Angular selective shading systems.
- Brise soleil.
- Choosing the correct glazed facade heating system.
- Computational fluid dynamics (CFD).
- Curved glass.
- Double glazing.
- Double glazing v triple glazing.
- Emissivity.
- g-value.
- Glass manifestation.
- Solar heat gain coefficient.
- Thermal bridge.
- Thermal optical properties.
- Triple glazing.
- U value.
Featured articles and news
Reform of the fire engineering profession
Fire Engineers Advisory Panel: Authoritative Statement, reactions and next steps.
Restoration and renewal of the Palace of Westminster
A complex project of cultural significance from full decant to EMI, opportunities and a potential a way forward.
Apprenticeships and the responsibility we share
Perspectives from the CIOB President as National Apprentice Week comes to a close.
The first line of defence against rain, wind and snow.
Building Safety recap January, 2026
What we missed at the end of last year, and at the start of this...
National Apprenticeship Week 2026, 9-15 Feb
Shining a light on the positive impacts for businesses, their apprentices and the wider economy alike.
Applications and benefits of acoustic flooring
From commercial to retail.
From solid to sprung and ribbed to raised.
Strengthening industry collaboration in Hong Kong
Hong Kong Institute of Construction and The Chartered Institute of Building sign Memorandum of Understanding.
A detailed description from the experts at Cornish Lime.
IHBC planning for growth with corporate plan development
Grow with the Institute by volunteering and CP25 consultation.
Connecting ambition and action for designers and specifiers.
Electrical skills gap deepens as apprenticeship starts fall despite surging demand says ECA.
Built environment bodies deepen joint action on EDI
B.E.Inclusive initiative agree next phase of joint equity, diversity and inclusion (EDI) action plan.
Recognising culture as key to sustainable economic growth
Creative UK Provocation paper: Culture as Growth Infrastructure.
Futurebuild and UK Construction Week London Unite
Creating the UK’s Built Environment Super Event and over 25 other key partnerships.
Welsh and Scottish 2026 elections
Manifestos for the built environment for upcoming same May day elections.
Advancing BIM education with a competency framework
“We don’t need people who can just draw in 3D. We need people who can think in data.”























