Graphene in civil engineering
Contents |
[edit] Introduction
Scientists at the University of Manchester first isolated flakes of graphene in 2004, winning them a Nobel prize in physics 6 years later. The many superlative properties of the material have led to thousands of scientific publications and patents every year in this new and exciting area of research.
Graphene is a one-atom-thick honeycomb of carbon atoms with world-beating mechanical, thermal, optical and electrical properties. It has already been used for flexible electronics, energy storage, nanocomposites, sensors, liquid filtration and thermal management.
[edit] Construction applications
UK companies are now developing commercial applications of graphene for civil engineering. For example, Graphitene Ltd is currently developing thermally conductive cement grout materials containing graphene for geothermal wells, as well as cements with graphene admixtures that are mechanically stronger.
The company is also working on improving asphalt with graphene, both for more thermally resistant and durable roads, with increased elastic recovery and reduced cracking, and for fire-resistant bitumen roof materials.
Meanwhile, Haydale Composite Solutions Ltd has announced production of graphene-enhanced, electrically-conductive, carbon fibre reinforced, composite materials with improved resistance to damage from lightning strikes. This has already been incorporated into an aileron designed by Airbus and could soon be used for wind-turbine blades.
[edit] Supply chain concerns
However, while the future is bright for this 2D carbon material, it is not without challenges. One of the crucial barriers to real-world applications is lack of confidence in the supply chain.
It is common for companies which want to develop graphene-enabled products to struggle to find a reliable source of material from graphene suppliers. This is due to batch-to-batch variability, an issue that can be amplified by the fact that neither the supplier nor end-user really knows the physical or chemical properties of the material supplied.
The problem is because commercially available graphene, from the hundreds of suppliers world-wide, is typically a black powder or liquid containing flakes of one or a few layers graphene, as well as graphite. Measuring a statistically representative amount of nanoscale flakes for every part of every batch of material that can be produced on the tonne-scale is extremely difficult. Similarly, there are no standardised measurement procedures for doing this and so no well-defined quality control techniques exist.
[edit] New standard and guide
The issue is being addressed through work at the National Physical Laboratory (NPL), the UK's national measurement institute, which has developed the first international graphene standard on terminology within the International Organization for Standardization (ISO, 2017). This is an important first step in allowing different parts of the graphene supply chain to communicate what type of graphene they require.
Furthermore, we have now released a good practice guide entitled Characterisation of the structure of graphene in partnership with the National Graphene Institute at the University of Manchester, which will form the basis for future ISO measurement standards (NPL, 2017). This enables end-users to compare the properties of commercial graphene that have been measured in the same, reliable and accurate way.
It is hoped that through this work, more graphene-enabled products will soon come to market in many different application areas.
This article was originally published here by ICE on 15 January 2018. It was written by Andrew Pollard.
--The Institution of Civil Engineers
[edit] Related articles on Designing Buildings Wiki
Featured articles and news
RTPI leader to become new CIOB Chief Executive Officer
Dr Victoria Hills MRTPI, FICE to take over after Caroline Gumble’s departure.
Social and affordable housing, a long term plan for delivery
The “Delivering a Decade of Renewal for Social and Affordable Housing” strategy sets out future path.
A change to adoptive architecture
Effects of global weather warming on architectural detailing, material choice and human interaction.
The proposed publicly owned and backed subsidiary of Homes England, to facilitate new homes.
How big is the problem and what can we do to mitigate the effects?
Overheating guidance and tools for building designers
A number of cool guides to help with the heat.
The UK's Modern Industrial Strategy: A 10 year plan
Previous consultation criticism, current key elements and general support with some persisting reservations.
Building Safety Regulator reforms
New roles, new staff and a new fast track service pave the way for a single construction regulator.
Architectural Technologist CPDs and Communications
CIAT CPD… and how you can do it!
Cooling centres and cool spaces
Managing extreme heat in cities by directing the public to places for heat stress relief and water sources.
Winter gardens: A brief history and warm variations
Extending the season with glass in different forms and terms.
Restoring Great Yarmouth's Winter Gardens
Transforming one of the least sustainable constructions imaginable.
Construction Skills Mission Board launch sector drive
Newly formed government and industry collaboration set strategy for recruiting an additional 100,000 construction workers a year.
New Architects Code comes into effect in September 2025
ARB Architects Code of Conduct and Practice available with ongoing consultation regarding guidance.
Welsh Skills Body (Medr) launches ambitious plan
The new skills body brings together funding and regulation of tertiary education and research for the devolved nation.
Paul Gandy FCIOB announced as next CIOB President
Former Tilbury Douglas CEO takes helm.
UK Infrastructure: A 10 Year Strategy. In brief with reactions
With the National Infrastructure and Service Transformation Authority (NISTA).