Graphene in civil engineering
Contents |
[edit] Introduction
Scientists at the University of Manchester first isolated flakes of graphene in 2004, winning them a Nobel prize in physics 6 years later. The many superlative properties of the material have led to thousands of scientific publications and patents every year in this new and exciting area of research.
Graphene is a one-atom-thick honeycomb of carbon atoms with world-beating mechanical, thermal, optical and electrical properties. It has already been used for flexible electronics, energy storage, nanocomposites, sensors, liquid filtration and thermal management.
[edit] Construction applications
UK companies are now developing commercial applications of graphene for civil engineering. For example, Graphitene Ltd is currently developing thermally conductive cement grout materials containing graphene for geothermal wells, as well as cements with graphene admixtures that are mechanically stronger.
The company is also working on improving asphalt with graphene, both for more thermally resistant and durable roads, with increased elastic recovery and reduced cracking, and for fire-resistant bitumen roof materials.
Meanwhile, Haydale Composite Solutions Ltd has announced production of graphene-enhanced, electrically-conductive, carbon fibre reinforced, composite materials with improved resistance to damage from lightning strikes. This has already been incorporated into an aileron designed by Airbus and could soon be used for wind-turbine blades.
[edit] Supply chain concerns
However, while the future is bright for this 2D carbon material, it is not without challenges. One of the crucial barriers to real-world applications is lack of confidence in the supply chain.
It is common for companies which want to develop graphene-enabled products to struggle to find a reliable source of material from graphene suppliers. This is due to batch-to-batch variability, an issue that can be amplified by the fact that neither the supplier nor end-user really knows the physical or chemical properties of the material supplied.
The problem is because commercially available graphene, from the hundreds of suppliers world-wide, is typically a black powder or liquid containing flakes of one or a few layers graphene, as well as graphite. Measuring a statistically representative amount of nanoscale flakes for every part of every batch of material that can be produced on the tonne-scale is extremely difficult. Similarly, there are no standardised measurement procedures for doing this and so no well-defined quality control techniques exist.
[edit] New standard and guide
The issue is being addressed through work at the National Physical Laboratory (NPL), the UK's national measurement institute, which has developed the first international graphene standard on terminology within the International Organization for Standardization (ISO, 2017). This is an important first step in allowing different parts of the graphene supply chain to communicate what type of graphene they require.
Furthermore, we have now released a good practice guide entitled Characterisation of the structure of graphene in partnership with the National Graphene Institute at the University of Manchester, which will form the basis for future ISO measurement standards (NPL, 2017). This enables end-users to compare the properties of commercial graphene that have been measured in the same, reliable and accurate way.
It is hoped that through this work, more graphene-enabled products will soon come to market in many different application areas.
This article was originally published here by ICE on 15 January 2018. It was written by Andrew Pollard.
--The Institution of Civil Engineers
[edit] Related articles on Designing Buildings Wiki
Featured articles and news
Design and construction industry podcasts
Professional development, practice, the pandemic, platforms and podcasts. Have we missed anything?
C20 Society; Buildings at Risk List 2025
10 more buildings published with updates on the past decade of buildings featured.
Boiler Upgrade Scheme and certifications consultation
Summary of government consultation, closing 11 June 2025.
Deputy editor of AT, Tim Fraser, discusses the newly formed society with its current chair, Chris Halligan MCIAT.
Barratt Lo-E passivhaus standard homes planned enmasse
With an initial 728 Lo-E homes across two sites and many more planned for the future.
Government urged to uphold Warm Homes commitment
ECA and industry bodies write to Government concerning its 13.2 billion Warm Homes manifesto commitment.
From project managers to rising stars, sustainability pioneers and more.
Places of Worship in Britain and Ireland, 1929-1990. Book review.
The emancipation of women in art.
Call for independent National Grenfell oversight mechanism
MHCLG share findings of Building Safety Inquiry in letter to Secretary of State and Minister for Building Safety.
The Architectural Technology Awards
AT Awards now open for this the sixth decade of CIAT.
50th Golden anniversary ECA Edmundson awards
Deadline for submissions Friday 30 May 2025.
The benefits of precast, off-site foundation systems
Top ten benefits of this notable innovation.
Encouraging individuals to take action saving water at home, work, and in their communities.
Takes a community to support mental health and wellbeing
The why of becoming a Mental Health Instructor explained.
Mental health awareness week 13-18 May
The theme is communities, they can provide a sense of belonging, safety, support in hard times, and a sense purpose.
Mental health support on the rise but workers still struggling
CIOB Understanding Mental Health in the Built Environment 2025 shows.
Design and construction material libraries
Material, sample, product or detail libraries a key component of any architectural design practice.