Engineered timber
Contents |
[edit] What is engineered timber?
‘Engineered timber’, also known as 'Mass timber', relates to wood-based composite materials. Typically, solid softwood is processed in a factory, combined with other materials (for example adhesives) and formed into a new material. These engineered timber products combine all the positive attributes of timber, for example strength, weight, sustainability etc, while removing some of the negative attributes, such as variability, stability and limited section sizes.
[edit] Is engineered timber better than natural timber?
Although timber is a strong, flexible, structural material it is also a natural material and so the strength properties can vary significantly based on features of the tree.
Engineered timber products help to overcome these issues by processing the timber and removing some of the variability of the natural material. Solid timber can be converted to particles, strands or laminates which can be combined with other materials, such as glues, to form composite wood products.
The principal reasons for transforming wood into engineered timber products include to:
- Transcend the dimensional limitations of sawn wood.
- Improve performance, structural properties, stability or flexibility
- Transform the natural material into a homogenous product.
- Utilise low-grade material, minimise waste and maximise the use of a valuable resource.
[edit] What are the advantages of engineered timber products?
The advantages of engineered timber products include:
- improved structural properties and dimensional stability
- large sections and lengths
- reduced overall wastage of the timber resource
- less material variability aesthetic variety utilisation of logs unsuitable for conversion to sawn timber.
In addition, the products are produced at low moisture contents therefore reducing the risk of movement due to drying in service in internal environments.
Since structural timber composites are factory produced, the only constraints on length and section size are the practicalities of transportation and handling. This offers many advantages to structural engineers. For example, long span/double spanning engineered I-joists can be used in the construction of multi-storey timber framed buildings. These long, multiple span I-joists help to improve the disproportionate collapse design of the building, making construction of the buildings more simple and cost effective.
[edit] What are the types of engineered timber products?
Engineered timber products include layed composites which are considered structural timber solutions. Their properties are consistent and they are typically stronger and longer spanning than solid timber sections:
Engineered timber products can also include particle composites such as:
- Parallel strand timber
- Particle boards
- Orientated strand board (OSB)
--Timber Development UK 16:52, 14 Dec 2022 (BST)
[edit] Related articles on Designing Buildings
- 11 things you didn't know about wood.
- A guide to the use of urban timber FB 50.
- Biomaterial.
- Carpentry.
- Chip carving.
- Cross-laminated timber.
- Facts about forestry.
- Glulam.
- Janka hardness rating scale.
- Laminated veneer lumber LVL.
- Modified wood.
- Nails - a brief history.
- Panelling.
- Physical Properties of Wood.
- Plywood.
- Sustainable timber.
- Testing timber.
- The differences between hardwood and softwood.
- Timber and healthy interiors.
- Timber vs wood.
- Types of timber.
- Wainscoting.
- Whole life carbon assessment of timber.
- Wood around the world.
- Wood, embodied carbon and operational carbon.
Featured articles and news
Combating burnout.
The 5 elements of seiri, seiton, seiso, seiketsu and shitsuke.
Shading for housing, a design guide
A look back at embedding a new culture of shading.
The Architectural Technology Awards
The AT Awards 2025 are open for entries!
ECA Blueprint for Electrification
The 'mosaic of interconnected challenges' and how to deliver the UK’s Transition to Clean Power.
Grenfell Tower Principal Contractor Award notice
Tower repair and maintenance contractor announced as demolition contractor.
Passivhaus social homes benefit from heat pump service
Sixteen new homes designed and built to achieve Passivhaus constructed in Dumfries & Galloway.
CABE Publishes Results of 2025 Building Control Survey
Concern over lack of understanding of how roles have changed since the introduction of the BSA 2022.
British Architectural Sculpture 1851-1951
A rich heritage of decorative and figurative sculpture. Book review.
A programme to tackle the lack of diversity.
Independent Building Control review panel
Five members of the newly established, Grenfell Tower Inquiry recommended, panel appointed.
Welsh Recharging Electrical Skills Charter progresses
ECA progressing on the ‘asks’ of the Recharging Electrical Skills Charter at the Senedd in Wales.
A brief history from 1890s to 2020s.
CIOB and CORBON combine forces
To elevate professional standards in Nigeria’s construction industry.
Amendment to the GB Energy Bill welcomed by ECA
Move prevents nationally-owned energy company from investing in solar panels produced by modern slavery.
Gregor Harvie argues that AI is state-sanctioned theft of IP.
Experimental AI housing target help for councils
Experimental AI could help councils meet housing targets by digitising records.
Comments
[edit] To make a comment about this article, click 'Add a comment' above. Separate your comments from any existing comments by inserting a horizontal line.