Engineered timber
Contents |
[edit] What is engineered timber?
‘Engineered timber’, also known as 'Mass timber', relates to wood-based composite materials. Typically, solid softwood is processed in a factory, combined with other materials (for example adhesives) and formed into a new material. These engineered timber products combine all the positive attributes of timber, for example strength, weight, sustainability etc, while removing some of the negative attributes, such as variability, stability and limited section sizes.
[edit] Is engineered timber better than natural timber?
Although timber is a strong, flexible, structural material it is also a natural material and so the strength properties can vary significantly based on features of the tree.
Engineered timber products help to overcome these issues by processing the timber and removing some of the variability of the natural material. Solid timber can be converted to particles, strands or laminates which can be combined with other materials, such as glues, to form composite wood products.
The principal reasons for transforming wood into engineered timber products include to:
- Transcend the dimensional limitations of sawn wood.
- Improve performance, structural properties, stability or flexibility
- Transform the natural material into a homogenous product.
- Utilise low-grade material, minimise waste and maximise the use of a valuable resource.
[edit] What are the advantages of engineered timber products?
The advantages of engineered timber products include:
- improved structural properties and dimensional stability
- large sections and lengths
- reduced overall wastage of the timber resource
- less material variability aesthetic variety utilisation of logs unsuitable for conversion to sawn timber.
In addition, the products are produced at low moisture contents therefore reducing the risk of movement due to drying in service in internal environments.
Since structural timber composites are factory produced, the only constraints on length and section size are the practicalities of transportation and handling. This offers many advantages to structural engineers. For example, long span/double spanning engineered I-joists can be used in the construction of multi-storey timber framed buildings. These long, multiple span I-joists help to improve the disproportionate collapse design of the building, making construction of the buildings more simple and cost effective.
[edit] What are the types of engineered timber products?
Engineered timber products include layed composites which are considered structural timber solutions. Their properties are consistent and they are typically stronger and longer spanning than solid timber sections:
Engineered timber products can also include particle composites such as:
- Parallel strand timber
- Particle boards
- Orientated strand board (OSB)
--Timber Development UK 16:52, 14 Dec 2022 (BST)
[edit] Related articles on Designing Buildings
- 11 things you didn't know about wood.
- A guide to the use of urban timber FB 50.
- Biomaterial.
- Carpentry.
- Chip carving.
- Cross-laminated timber.
- Facts about forestry.
- Glulam.
- Janka hardness rating scale.
- Laminated veneer lumber LVL.
- Modified wood.
- Nails - a brief history.
- Panelling.
- Physical Properties of Wood.
- Plywood.
- Sustainable timber.
- Testing timber.
- The differences between hardwood and softwood.
- Timber and healthy interiors.
- Timber vs wood.
- Types of timber.
- Wainscoting.
- Whole life carbon assessment of timber.
- Wood around the world.
- Wood, embodied carbon and operational carbon.
Featured articles and news
Welsh and Scottish 2026 elections
Manifestos for the built environment for upcoming same May day elections.
Advancing BIM education with a competency framework
“We don’t need people who can just draw in 3D. We need people who can think in data.”
Guidance notes to prepare for April ERA changes
From the Electrical Contractors' Association Employee Relations team.
Significant changes to be seen from the new ERA in 2026 and 2027, starting on 6 April 2026.
First aid in the modern workplace with St John Ambulance.
Ireland's National Residential Retrofit Plan
Staged initiatives introduced step by step.
Solar panels, pitched roofs and risk of fire spread
60% increase in solar panel fires prompts tests and installation warnings.
Modernising heat networks with Heat interface unit
Why HIUs hold the key to efficiency upgrades.
Reflecting on the work of the CIOB Academy
Looking back on 2025 and where it's going next.
Procurement in construction: Knowledge hub
Brief, overview, key articles and over 1000 more covering procurement.
Sir John Betjeman’s love of Victorian church architecture.
Exchange for Change for UK deposit return scheme
The UK Deposit Management Organisation established to deliver Deposit Return Scheme unveils trading name.
A guide to integrating heat pumps
As the Future Homes Standard approaches Future Homes Hub publishes hints and tips for Architects and Architectural Technologists.
BSR as a standalone body; statements, key roles, context
Statements from key figures in key and changing roles.
ECA launches Welsh Election Manifesto
ECA calls on political parties at 100 day milestone to the Senedd elections.
Resident engagement as the key to successful retrofits
Retrofit is about people, not just buildings, from early starts to beyond handover.
























Comments
[edit] To make a comment about this article, click 'Add a comment' above. Separate your comments from any existing comments by inserting a horizontal line.