Emissivity in buildings
The amount of long wave infra-red radiation which a surface of known temperature (such as the façade of a building) will emit to its surroundings is determined by its emissivity. According to Kirchoff's law, the emissivity of a surface is equal to its radiant absorptivity at a given temperature and wavelength.
All bodies which are hotter than 0°K emit thermal radiation and absorb thermal radiation. The difference in the total amount of radiation emitted and absorbed by a body at any given moment may result in a net heat transfer which will produce a change in the temperature of that body.
Thermal radiation includes all those wavelengths of the electromagnetic spectrum which will heat a body when absorbed by it, ranging from about 100 nm to 100,000 nm. In general, the higher the temperature of a body, the lower the average wavelength of the radiation it emits. The range of terrestrial temperatures experienced within the built environment is comparatively small, and relative to the temperature of the sun this range is ‘cold’ and hence radiating at a much longer wavelength. This anomaly allows us to categorise thermal radiation as solar radiation and terrestrial or long wave infra-red radiation.
The wavelength of terrestrial radiation varies with temperature, however at room temperature approximately 97% of the radiation emanating from a perfect emitter will be within the range 3,000 nm to 50,000 nm. Terrestrial surfaces emit long wave infra-red radiation in all directions within a hemisphere about their azimuth.
This hemisphere can include a wide variety of thermal bodies, ranging from the clear night sky to relatively warmer solid bodies, all of which will be emitting different intensities and wavelengths of thermal radiation themselves. In order to simplify this complex situation terrestrial radiation is generally treated as an average heat transfer based on hemispherical emissivities and average hemispherical surface temperatures.
Emissivity can be an important factor in selecting building materials. For example, glass, can be given a low-e coating to reduce heat loss to the outside. In effect, this coating increases the reflectance of long wave infra-red radiation back into the interior by reducing the emissivity of the glass (its long wave infra-red absorption). Conversely, ‘cool roofs’ benefit from high emissivity, re-radiating absorbed solar radiation to the sky to reduce overheating in the summer.
There is also increasing interest in the urban heat island effect, a term given to localised higher temperatures that are experienced in urban environments compared with the temperatures of surrounding green spaces. This is predominantly a factor of solar absorption, but can be reduced by high emissivity.
[edit] Related articles on Designing Buildings
- Accredited construction details ACDs.
- Albedo.
- Angular selective shading systems.
- Birds and building collisions.
- Computational fluid dynamics (CFD).
- Cool roofs.
- Electromagnetic spectrum.
- g-value.
- Heat loss.
- Heat transfer.
- Low-e glass.
- Overheating.
- Shading coefficient.
- Solar heat gain coefficient.
- Solar reflectance index.
- Solar transmittance (gtot).
- The effects of electromagnetic fields in the workplace.
- Thermal bridge.
- Thermal optical properties.
- Thermography for traditional buildings.
- Urban heat island effect.
- U value.
- Visible light.
Featured articles and news
From mud bricks to smart concrete
A brief history of building materials.
Building automation and control systems market study
BSRIA 2024 North America BACS software & services.
Impact of digital technology on productivity in construction
New CIOB academy guidance for companies of all sizes.
Demolition and retrofit approaches in Planning Policy
MHCLG survey informing potential government updates.
Expert taskforce to spearhead new, new town generation
Sir Michael Lyons given 12 months for recommendations.
Government policy statement on new towns
A coded vision for a new generation of new towns.
AT Principal Designer exemplars published
Supporting clear and comprehensive demonstration of the skills required.
Homes England goes to TOWN for co-housing project
Marmalade Lane developer selected for Northstowe neighbourhood.
Cohousing and related approaches to solve housing issues
Different forms of community housing explained with examples.
Alternative and off-grid housing communities in the UK
From Hockerton Housing Project to Tinkers Bubble.
Skills gap highlighted to Minister for Industry
Key opportunity in mission for economic growth and net-zero.
Specifying XPS in masonry cavity walls below DPC level
Moisture requirements, DPCs and third party certification.
Types of rigid foam insulation
A brief description and some of the main construction types.
Metal composite material panel systems MCM and MCP
Sandwich finishes, forms, details, core and their impacts.
Cumbria's vernacular architecture
A history of building impeded by unsettled times.
CIOB and MMC Ireland announce strategic partnership
For better working conditions, and a more productive construction sector.