Jumpform v slipform
Contents |
[edit] Introduction
Jumpform and slipform are both systems of concrete construction that use a self-climbing formwork to construct multi-storey structures, typically building cores and shafts, as well as chimneys and silos. They are both climb-form systems.
In both cases, formwork into which concrete is poured, climbs vertically up the structure being constructed; sometimes this is from power provided by hydraulic rams and electric motors and can mean that craneage is reduced to a minimum. Both systems feature one or more decks or platforms surrounding the construction for workers to carry out the necessary operations as construction proceeds, such as pouring and monitoring concrete compaction, placing reinforcement and finishing the concrete.
Whether slipform or jumpform, the formwork is supported on the concrete that has already been cast below it, so it does not rely on support from other parts of the building; this allows the shaft or core to progress ahead of the rest of the building works.
However, there are important differences between the two systems in terms of operation, speed and the result achieved.
[edit] Jumpform
Typically, jumpform is used on buildings more than five storeys high, although if a fully-climbing system, it can be applied to 20-storeys and more.
Jumpform is characterised by progression in a series of steps or ‘jumps’, progressing to the next section only after the concrete in the previous one has achieved the necessary strength. For example, after a 2m section has been poured and set, the formwork is ‘jumped’ to pour the next 2m section. The system is particularly suited to situations where the resulting joints between jumps will be concealed at every level e.g by the floors of a building.
Jumpform can be very productive, fast and efficient yet minimise the labour required and craneage costs. There are three main type of jumpform:
- Normal – involves formwork that is lifted off by crane and reattached at the next level above.
- Guided – similar to the normal method above but units remain anchored to the structure during the raising operation by crane. This method can be safer and more controlled.
- Self-climbing – this type of jumpform is raised on rails and so does not require a crane.
There could also be trailing platforms and screens that can be used to help workers apply any required finishing to the concrete or retrieve anchors used on the pour below.
Jumpform systems are highly engineered and so can be quickly and accurately adjusted in all planes. However, they depend on the availability of a skilled workforce on site.
[edit] Slipform
Slipform is a continuous pour system involving a self-climbing formwork that supports itself on the core or shaft being constructed, moving slowly over the concrete as it is cast in a continuous, monolithic pour. It can be used to achieve tapered structures with walls of diminishing thickness and is regarded as being more economical when used for structures over seven storeys high.
Slipform typically has three platforms – a lower platform for concrete finishing; a middle platform at the top level of the concrete being poured, and an upper platform for storing materials.
Normally advancing at a rate of around 300mm per hour, slipform can be regarded as a method of vertical extrusion. This can result in a smooth, continuous concrete finish without any joints, an effect which may be required where the finished structure will be visible e.g bridge pylons or a chimneys. However, slipform may entail higher costs due to the required round-the-clock working until the necessary height of structure has been achieved. Like jumpform, it also requires the availability on site of a small, highly-skilled workforce.
[edit] Related articles on Designing Buildings Wiki
Featured articles and news
Deputy editor of AT, Tim Fraser, discusses the newly formed society with its current chair, Chris Halligan MCIAT.
Barratt Lo-E passivhaus standard homes planned enmasse
With an initial 728 Lo-E homes across two sites and many more planned for the future.
Government urged to uphold Warm Homes commitment
ECA and industry bodies write to Government concerning its 13.2 billion Warm Homes manifesto commitment.
Places of Worship in Britain and Ireland, 1929-1990. Book review.
The emancipation of women in art.
CIOB Construction Manager of the Year 2025
Just one of the winners at the CIOB Awards 2025.
Call for independent National Grenfell oversight mechanism
MHCLG share findings of Building Safety Inquiry in letter to Secretary of State and Minister for Building Safety.
The Architectural Technology Awards
AT Awards now open for this the sixth decade of CIAT.
50th Golden anniversary ECA Edmundson awards
Deadline for submissions Friday 30 May 2025.
The benefits of precast, off-site foundation systems
Top ten benefits of this notable innovation.
Encouraging individuals to take action saving water at home, work, and in their communities.
Takes a community to support mental health and wellbeing
The why of becoming a Mental Health Instructor explained.
Mental health awareness week 13-18 May
The theme is communities, they can provide a sense of belonging, safety, support in hard times, and a sense purpose.
Mental health support on the rise but workers still struggling
CIOB Understanding Mental Health in the Built Environment 2025 shows.
Design and construction material libraries
Material, sample, product or detail libraries a key component of any architectural design practice.
Construction Products Reform Green Paper and Consultation
Still time to respond as consultation closes on 21 May 2025.
Resilient façade systems for smog reduction in Shanghai
A technical approach using computer simulation and analysis of solar radiation, wind patterns, and ventilation.