Could the buildings of the future be made with bones and eggshells?
Contents |
[edit] Introduction
As the world grapples with climate change, we urgently need to find ways of reducing our CO emissions. Sectors which rely heavily on fossil fuels, such as energy and aviation, are commonly held to be the worst offenders. But what most people don’t realise is that there’s another culprit, hiding in plain sight; on the streets of our cities, and in the buildings where we live and work.
In 2007 alone, steel and concrete were each responsible for more CO emissions than the entire global aviation industry. Before reaching the construction site, both steel and cement must be processed at very high temperatures – and this takes a lot of energy. So how can we reduce our dependence on these 'dirty' materials, when they play such a crucial role in construction?
One option is to use natural materials, such as wood. Humans have been building with wood for thousands of years, and wooden structures are currently experiencing a minor resurgence – partly because it’s a cheap and sustainable material.
But there are some disadvantages to building with wood; the material can warp in humid conditions, and is susceptible to attack by pests such as termites. And while natural materials, such as wood, are appealing from an environmental perspective, they can be unsatisfying for engineers who might wish to make components in a specific shape or size.
[edit] Copying life
So what if, instead of using natural materials as we find them, we make new materials that are inspired by nature? This idea started to gain traction in the research community in the 1970s and really exploded in the 1990s, with the development of nanotechnology and nanofabrication methods. Today, it forms the basis of a new field of scientific research: namely, 'biomimetics' – literally 'copying life'.
Biological cells are often referred to as 'the building blocks of life', because they are the smallest units of living matter. But to create a multi-cellular organism like you or me, cells must clump together with a support structure to form the biological materials we’re made of, tissues such as bone, cartilage, and muscle. It’s materials like these, which scientists interested in biomimetics have turned to for inspiration.
In order to make biomimetic materials, we need to have a deep understanding of how natural materials work. We know that natural materials are also 'composites': they are made of multiple different base materials, each with different properties. Composite materials are often lighter than single component materials, such as metals, while still having desirable properties such as stiffness, strength and toughness.
[edit] Making biomimetic materials
Materials engineers have spent decades measuring the composition, structure and properties of natural materials such as bone and eggshell, so we now have a good understanding of their characteristics.
For instance, we know that bone is composed of hydrated protein and mineral, in almost equal proportions. The mineral confers stiffness and hardness, while the protein confers toughness and resistance to fracture. Although bones can break, it is relatively rare, and they have the benefit of being self-healing – another feature that engineers are trying to bring to biomimetic materials.
Like bone, eggshell is a composite material, but it is around 95% mineral and only 5% hydrated protein. Yet even that small amount of protein is enough to make eggshell very tough, considering its thinness. The next challenge is to turn this knowledge into something solid.
There are two ways to mimic natural materials. Either you can mimic the composition of the material itself, or you can copy the process by which the material was made. Since natural materials are made by living creatures, there are no high temperatures involved in either of these methods. As such, biomimetic materials – let’s call them 'neo-bone' and 'neo-eggshell' – take much less energy to produce than steel or concrete.
In the laboratory, we have succeeded in making centimetre-scale samples of neo-bone. We do this by preparing different solutions of protein with the components that make bone mineral. A composite neo-bone material is then deposited from these solutions in a biomimetic manner at body temperature. There is no reason that this process – or an improved, faster version of it – couldn’t be scaled up to an industrial level.
Of course, steel and concrete are everywhere, so the way we design and construct buildings is optimised for these materials. To begin using biomimetic materials on a large scale, we’d need to completely rethink our building codes and standards for construction materials. But then, if we want to build future cities in a sustainable way, perhaps a major rethink is exactly what’s needed. The science is still in its infancy, but that doesn’t mean we can’t dream big about the future.
This article is published in collaboration with The Conversation.
It was written by Michelle Oyen, Bioengineering at the University of Cambridge.
This article was also published on the Future of Construction Knowledge Sharing Platform and the WEF Agenda Blog.
--Future of Construction 15:28, 16 Jun 2017 (BST)
[edit] Find out more
[edit] Related articles on Designing Buildings Wiki
Featured articles and news
Key points for construction at a glance with industry reactions.
Functionality, visibility and sustainability
The simpler approach to specification.
Architects, architecture, buildings, and inspiration in film
The close ties between makers and the movies, with our long list of suggested viewing.
SELECT three-point plan for action issued to MSPs
Call for Scottish regulation, green skills and recognition of electrotechnical industry as part of a manifesto for Scottish Parliamentary elections.
UCEM becomes the University of the Built Environment
Major milestone in its 106-year history, follows recent merger with London School of Architecture (LSE).
Professional practical experience for Architects in training
The long process to transform the nature of education and professional practical experience in the Architecture profession following recent reports.
A people-first approach to retrofit
Moving away from the destructive paradigm of fabric-first.
International Electrician Day, 10 June 2025
Celebrating the role of electrical engineers from André-Marie Amperè, today and for the future.
New guide for clients launched at Houses of Parliament
'There has never been a more important time for clients to step up and ...ask the right questions'
The impact of recycled slate tiles
Innovation across the decades.
EPC changes for existing buildings
Changes and their context as the new RdSAP methodology comes into use from 15 June.
Skills England publishes Sector skills needs assessments
Priority areas relating to the built environment highlighted and described in brief.
BSRIA HVAC Market Watch - May 2025 Edition
Heat Pump Market Outlook: Policy, Performance & Refrigerant Trends for 2025–2028.
Committing to EDI in construction with CIOB
Built Environment professional bodies deepen commitment to EDI with two new signatories: CIAT and CICES.
Government Grenfell progress report at a glance
Line by line recomendation overview, with links to more details.
An engaging and lively review of his professional life.
Sustainable heating for listed buildings
A problem that needs to be approached intelligently.
50th Golden anniversary ECA Edmundson apprentice award
Deadline for entries has been extended to Friday 27 June, so don't miss out!
CIAT at the London Festival of Architecture
Designing for Everyone: Breaking Barriers in Inclusive Architecture.
Mixed reactions to apprenticeship and skills reform 2025
A 'welcome shift' for some and a 'backwards step' for others.
Comments
Hello, The topic cited above is wonderful in concept.the R & D lover must to read