Humidity
Air will generally include moisture in the form of water vapour. Absolute humidity is the mass of water vapour in a volume of air divided by the mass of dry air.
Relative humidity (RH) is a measure of the water vapour density of air compared to the water vapour density for saturated air at the same temperature and pressure (that is, the maximum amount of moisture that air can 'hold' at that temperature and pressure). It is expressed as a percentage.
RH = (actual water vapour density / saturation water vapour density) x 100
When air cools, it is less able to “hold” moisture, that is, the saturation water vapour density falls, and so relative humidity rises. When the relative humidity reaches 100%, the air will be saturated. This is described as the dew point. If the air continues to cool, moisture will begin to condense.
Humidity influences thermal comfort. The higher the relative humidity, the less heat a person is able to lose through the evaporation of moisture on the skin, and so the hotter they will feel. Conversely, air that is too dry can cause problems such as dry eyes, nose, ears and throat. Typically, a relative humidity of 40 to 60% is appropriate in many buildings.
Humidity also affects the performance of buildings, causing condensation, mould growth, mildew, staining, slip hazards, damage to equipment and the corrosion and decay of the building fabric as well as poor performance of insulation. Condensation can occur on surfaces, or can be interstitial condensation, occurring between the layers of the building envelope, typically as a result of air diffusing from the warm interior of the building to the cool exterior and reaching its dew point within the building fabric.
Humidity can be measured using a hygrometer. Typically these are electronic moisture detectors, or devices such as a sling psychrometer which measures dry-bulb temperature and wet-bulb temperature, allowing relative humidity to be calculated or read from charts.
Humidity can be controlled by limiting sources of moisture (including reverse condensation, where moisture evaporates from damp materials), increasing temperatures, humidification or dehumidification, and by ventilation. Condensation can be further avoided by increasing surface temperatures (such as by the inclusion of insulation or by improving glazing).
In particular, it is necessary to avoid cold bridges, situations in a building where there is a direct connection between the inside and outside through one or more elements that are more thermally conductive than the rest of the building envelope, resulting in lower localised temperatures.
Humidity and condensation in buildings is regulated by Approved Document C (Site preparation and resistance to contaminates and moisture) and Approved Document F (Ventilation) and further guidance is available in BS 5250 Code of practice for the control of condensation in buildings.
NB Illustrated Guide to Mechanical Cooling (BG 1/2010), written by Kevin Pennycook and published by BSRIA in 2010, defines Relative humidity as: ‘A term often used to specify the internal design condition for humidity within a space. A ratio, usually expressed as a percentage, indicating the humidity of the air. Literally the actual vapour pressure of the air at a given dry bulb temperature divided by the saturation vapour pressure of the air at the same temperature.’
[edit] Related articles on Designing Buildings
- Air conditioning.
- Approved Document F.
- Condensation.
- Damp proofing.
- Dehumidification.
- Designing HVAC to resist harmful microorganisms.
- Dew point.
- Diagnosing the causes of dampness (GR 5 revised).
- Dry-bulb temperature.
- Humidification.
- Humidistat.
- HVAC.
- Interstitial condensation.
- Methodology for moisture investigations in traditional buildings.
- Moisture.
- Moisture content.
- Mould growth.
- Psychometric chart.
- Rising damp.
- Sling psychrometer.
- Thermal comfort.
- Thermal indices.
- Water vapour.
- Wet-bulb temperature.
Featured articles and news
Shading for housing, a design guide
A look back at embedding a new culture of shading.
The Architectural Technology Awards
The AT Awards 2025 are open for entries!
ECA Blueprint for Electrification
The 'mosaic of interconnected challenges' and how to deliver the UK’s Transition to Clean Power.
Grenfell Tower Principal Contractor Award notice
Tower repair and maintenance contractor announced as demolition contractor.
Passivhaus social homes benefit from heat pump service
Sixteen new homes designed and built to achieve Passivhaus constructed in Dumfries & Galloway.
CABE Publishes Results of 2025 Building Control Survey
Concern over lack of understanding of how roles have changed since the introduction of the BSA 2022.
British Architectural Sculpture 1851-1951
A rich heritage of decorative and figurative sculpture. Book review.
A programme to tackle the lack of diversity.
Independent Building Control review panel
Five members of the newly established, Grenfell Tower Inquiry recommended, panel appointed.
Welsh Recharging Electrical Skills Charter progresses
ECA progressing on the ‘asks’ of the Recharging Electrical Skills Charter at the Senedd in Wales.
A brief history from 1890s to 2020s.
CIOB and CORBON combine forces
To elevate professional standards in Nigeria’s construction industry.
Amendment to the GB Energy Bill welcomed by ECA
Move prevents nationally-owned energy company from investing in solar panels produced by modern slavery.
Gregor Harvie argues that AI is state-sanctioned theft of IP.
Experimental AI housing target help for councils
Experimental AI could help councils meet housing targets by digitising records.
BSRIA Occupant Wellbeing survey BOW
Occupant satisfaction and wellbeing tool inc. physical environment, indoor facilities, functionality and accessibility.