Water safety plan WSP
Contents |
[edit] Introduction
A water safety plan (WSP) is a comprehensive plan that highlights all potential concerns and hazards (including biological, chemical, physical and radiological) associated with a water system. It should identify risks, such as the levels of bacteria in the water, and how those risks can be eliminated or at least maintained within acceptable levels.
It’s often thought water systems in buildings are safe when connected to public supplies – but this ignores the potential for contamination (both chemical and microbial) and the growth of waterborne opportunistic pathogens within building water systems. Additionally, poor design and management of water systems within buildings can cause outbreaks of disease.
A WSP can help to ensure water that is produced and delivered is safe. It also helps to minimise the risk of an incident that could disrupt a continuous water supply.
[edit] Expanded scope
The proactive nature of a WSP means it should be wide ranging and might consider aspects including:
- Management of the catchment to prevent contamination of the source water.
- Removal or elimination of contaminants during treatment of the water.
- Prevention of contamination of the water after treatment (during distribution, storage and handling).
- Potential for flood damage.
- Sufficiency of the source water and alternative supplies.
- Availability and reliability of power supplies.
- Quality of treatment chemicals.
- Availability of trained staff.
- Reliability of communication systems.
[edit] A holistic approach to water safety
In 2011, the World Health Organization (WHO) published Water safety in buildings, which is supported by the Drinking Water Inspectorate (DWI) of England and Wales. This publication offered guidance specific to water safety in buildings with the adoption of water safety planning.
The document recommends three components in the development of a WSP:
- Assessing the system to determine whether the provider as a whole can deliver water of a sufficient quality. What systems are present? Where are they? Who uses them?
- Monitoring control measures in the supply chain that are of particular importance in securing water safety. How should this be monitored? When should it be inspected?
- Adopting a management approach that describes the actions to be undertaken from normal conditions to extreme events and relays how they will be communicated to the various stakeholders. Who is responsible? What decisions are made?
[edit] BS 8680:2020
Each of these three components was integrated into a British Standard, BS 8680:2020 Water quality. Water safety plans. Code of practice published in May 2020.
This code of practice follows the WHO guidance and integrates some specifics encountered in UK legislation and regulations (and therefore goes beyond the simple legionella risk assessment encountered in most buildings and workplaces). It looks at all water systems, assessing their risk, monitoring the identified mitigation measures for those risks, outlining the implementation of an adequate management scheme. This approach covers the entire lifespan of a building from conception and design to alteration or decommissioning.
A Water Safety Group (WSG) has responsibility for developing the WSP. Some members of the WSG may take part permanently due to their level of responsibility associated with the water systems (for example the building owner) and some may take part only occasionally (for example external consultants or water experts).
NB Water safety in buildings, published by the World Health Organization in 2011, defines a water safety plan as: ‘A comprehensive risk-assessment and risk management approach that encompasses all steps in water supply, from catchment to consumer.’
[edit] Related articles
- Achieving sustainable clean water infrastructure for all.
- Back to the workplace: are you prepared?
- British Standards Institution BSI.
- BS 8680:2020 Water quality. Water Safety Plans. Code of practice.
- Do our water quality standards demonstrate to the public that their water supply is clean?
- Drinking Water Inspectorate.
- Mains water.
- Ofwat.
- Planning for water safety in buildings and workplaces.
- Water.
[edit] External resources
Featured articles and news
Boiler Upgrade Scheme and certifications consultation
Summary of government consultation which closes 11 June 2025.
Deputy editor of AT, Tim Fraser, discusses the newly formed society with its current chair, Chris Halligan MCIAT.
Barratt Lo-E passivhaus standard homes planned enmasse
With an initial 728 Lo-E homes across two sites and many more planned for the future.
Government urged to uphold Warm Homes commitment
ECA and industry bodies write to Government concerning its 13.2 billion Warm Homes manifesto commitment.
Places of Worship in Britain and Ireland, 1929-1990. Book review.
The emancipation of women in art.
CIOB Construction Manager of the Year 2025
Just one of the winners at the CIOB Awards 2025.
Call for independent National Grenfell oversight mechanism
MHCLG share findings of Building Safety Inquiry in letter to Secretary of State and Minister for Building Safety.
The Architectural Technology Awards
AT Awards now open for this the sixth decade of CIAT.
50th Golden anniversary ECA Edmundson awards
Deadline for submissions Friday 30 May 2025.
The benefits of precast, off-site foundation systems
Top ten benefits of this notable innovation.
Encouraging individuals to take action saving water at home, work, and in their communities.
Takes a community to support mental health and wellbeing
The why of becoming a Mental Health Instructor explained.
Mental health awareness week 13-18 May
The theme is communities, they can provide a sense of belonging, safety, support in hard times, and a sense purpose.
Mental health support on the rise but workers still struggling
CIOB Understanding Mental Health in the Built Environment 2025 shows.
Design and construction material libraries
Material, sample, product or detail libraries a key component of any architectural design practice.
Construction Products Reform Green Paper and Consultation
Still time to respond as consultation closes on 21 May 2025.
Resilient façade systems for smog reduction in Shanghai
A technical approach using computer simulation and analysis of solar radiation, wind patterns, and ventilation.