Developing test methods to assess video flame and video smoke detectors
|
Contents |
[edit] Introduction
Video fire detectors emerged as a new means of fire detection around 2004, particularly in large indoor spaces such as those in atria, warehouses and industrial complexes. Detection of fires in such spaces has traditionally been provided by optical-beam smoke and aspirating smoke detectors, or flame detectors – but video fire detectors potentially offer important advantages.
[edit] They can ‘see’ the fire
A video detector is alerted to the presence of a fire by identifying the characteristic signatures of smoke or flame within the field of view of its camera. The images from the live video feed are analysed by sophisticated algorithms to detect these signatures. There are two detector types – video flame detectors (VFDs) that recognise flaming fires, and video smoke detectors (VSDs) that are alerted to the presence of moving smoke. Some systems can have both sets of algorithms working independently at the same time.
The detector does not need to be in proximity to smoke or flames to detect fire as (provided there is direct line of sight) it can ‘see’ them. This enables a quicker response than is generally achievable by conventional smoke and flame detectors, and can also provide a visual verification of fire.
[edit] No current means of testing/assessing capabilities
While there has been a significant amount of fundamental research work on the capabilities and potential applications of video fire detectors, due to their complexity there are currently no defined and robust methods of assessing the capabilities of these detectors for testing and certification purposes.
Work by BRE Global and the Fire Industry Association (FIA) to develop test methodologies for these technologies has identified the greatest obstacle to be a lack of benchmark tests of basic performance. These are needed to perform the fundamental tests of repeatability, reproducibility and environmental testing defined in the EN 54 Fire detection and fire alarm systems standard. Additionally, operational performance tests are needed to verify the absolute capabilities of video detectors in detecting the fires anticipated in service environments.
A BRE Trust-supported research programme was established by BRE, in collaboration with video fire detector manufacturers, to develop benchmark and operational performance test methods for both video flame and video smoke detectors. To gain the necessary underpinning knowledge on the performance capabilities of video fire detectors, the research group has developed methods for bench testing and full-scale fire testing of these systems.
[edit] Collaborative research programme
The group’s development of methodologies for assessing the performance of VFDs and VSDs has been summarised in a briefing paper that can be freely downloaded from here. It is now expected that these methodologies will support the development of a test standard and associated code of practice.
[edit] About this article
This article was written by the BRE Trust and published in July 2019 on its website under the title ‘Video flame and smoke detectors’. It can be accessed here.
Other articles by BRE on Designing Buildings Wiki can be accessed here.
[edit] Related articles on Designing Buildings Wiki
Featured articles and news
Do you take the lead in a circular construction economy?
Help us develop and expand this wiki as a resource for academia and industry alike.
Warm Homes Plan Workforce Taskforce
Risks of undermining UK’s energy transition due to lack of electrotechnical industry representation, says ECA.
Cost Optimal Domestic Electrification CODE
Modelling retrofits only on costs that directly impact the consumer: upfront cost of equipment, energy costs and maintenance costs.
The Warm Homes Plan details released
What's new and what is not, with industry reactions.
Could AI and VR cause an increase the value of heritage?
The Orange book: 2026 Amendment 4 to BS 7671:2018
ECA welcomes IET and BSI content sign off.
How neural technologies could transform the design future
Enhancing legacy parametric engines, offering novel ways to explore solutions and generate geometry.
Key AI related terms to be aware of
With explanations from the UK government and other bodies.
From QS to further education teacher
Applying real world skills with the next generation.
A guide on how children can use LEGO to mirror real engineering processes.
Data infrastructure for next-generation materials science
Research Data Express to automate data processing and create AI-ready datasets for materials research.
Wired for the Future with ECA; powering skills and progress
ECA South Wales Business Day 2025, a day to remember.
AI for the conservation professional
A level of sophistication previously reserved for science fiction.
Biomass harvested in cycles of less than ten years.
An interview with the new CIAT President
Usman Yaqub BSc (Hons) PCIAT MFPWS.
Cost benefit model report of building safety regime in Wales
Proposed policy option costs for design and construction stage of the new building safety regime in Wales.
Do you receive our free biweekly newsletter?
If not you can sign up to receive it in your mailbox here.























