Crane supports
Tower cranes are usually supplied on a hire basis, with the client being responsible for the design and construction of the base upon which the crane will be erected. Details of loading are provided by the crane supplier and the base is most commonly designed as a temporary structure, although sometimes a crane base will be incorporated into the permanent structure to save on cost and time.
Loads are given in two forms, ‘in service’ loads, where the crane is functioning and wind speeds are restricted (ie cranes will not operate at high wind speeds), and ‘out of service’ loads, where the crane is not being used but maximum wind speeds may occur.
The location for a crane should be carefully selected to provide a maximum working radius, and when two cranes are being used on the same site mast heights and jib lengths must be considered so that they do not clash.
Cranes are typically structured around two rails at their base between 4.5m-10m apart with wheels in each corner. Cranes are not normally tied down, so sufficient kentledge must be provided to ensure vertical loading from the crane passes through the rails and into the foundation. The foundation is designed so that the unfactored loading from the crane and the unfactored loading from the foundation itself create a bearing pressure which is less than the allowable bearing pressure of the soil.
Various foundation types can be selected depending on the ground conditions:
- Where possible a structural fill can be compacted and used to support a crane with the load spreading through layers of track support at 45° in to the soil strata below.
- When loads from the crane increase, reinforced concrete foundations may be required. This can involve a series of reinforced concrete beams used to support line loads as a result of the crane loading.
- When ground conditions are particularly poor, piled foundations may be necessary. Careful design is required to ensure that reinforcement at the top of the pile top does not cause problems for positioning the mast base section of the crane.
[edit] Related articles on Designing Buildings Wiki
- Avoiding crane collapses.
- Bituminous mixing and laying plant.
- CDM.
- Compressed air plant.
- Concreting plant.
- Construction plant.
- Crane regulations.
- Deleterious materials.
- Designers.
- Design liability.
- Demolition.
- Earth-moving plant.
- Electromagnetic overhead cranes.
- Excavating plant.
- Facade retention.
- Falsework.
- Forklift truck.
- Formwork.
- Gantry.
- Health and Safety.
- Scaffolding.
- Temporary works
- Trench support.
- Types of crane.
[edit] External references
- BS5975:2008 + A1: 2001 Code of Practice for Temporary Works Procedures and the Permissible Stress Design of Falsework (BSI 2011).
Featured articles and news
Do you take the lead in a circular construction economy?
Help us develop and expand this wiki as a resource for academia and industry alike.
Warm Homes Plan Workforce Taskforce
Risks of undermining UK’s energy transition due to lack of electrotechnical industry representation, says ECA.
Cost Optimal Domestic Electrification CODE
Modelling retrofits only on costs that directly impact the consumer: upfront cost of equipment, energy costs and maintenance costs.
The Warm Homes Plan details released
What's new and what is not, with industry reactions.
Could AI and VR cause an increase the value of heritage?
The Orange book: 2026 Amendment 4 to BS 7671:2018
ECA welcomes IET and BSI content sign off.
How neural technologies could transform the design future
Enhancing legacy parametric engines, offering novel ways to explore solutions and generate geometry.
Key AI related terms to be aware of
With explanations from the UK government and other bodies.
From QS to further education teacher
Applying real world skills with the next generation.
A guide on how children can use LEGO to mirror real engineering processes.
Data infrastructure for next-generation materials science
Research Data Express to automate data processing and create AI-ready datasets for materials research.
Wired for the Future with ECA; powering skills and progress
ECA South Wales Business Day 2025, a day to remember.
AI for the conservation professional
A level of sophistication previously reserved for science fiction.
Biomass harvested in cycles of less than ten years.
An interview with the new CIAT President
Usman Yaqub BSc (Hons) PCIAT MFPWS.
Cost benefit model report of building safety regime in Wales
Proposed policy option costs for design and construction stage of the new building safety regime in Wales.
Do you receive our free biweekly newsletter?
If not you can sign up to receive it in your mailbox here.






















