Butadiene
Contents |
[edit] What is butadiene?
Butadiene, buta means 4 carbons as in butane, and the diene means it contains two double-bonded carbons. It is referred to as 1,3-butadiene but also variations such as 1,2 and 1,4 butadiene, depending on the number of carbon atoms connected and thus stability. It is colourless gas with a odour of petrol, which breaks down quickly in the atmosphere, though is found in urban air as a result of motor vehicle emissions. Natural sources of 1,3-butadiene in the air come from Forest fires.
Butadiene is considered as a volatile organic compound or VOC. Organic compounds are defined in The Volatile Organic Compounds in Paints, Varnishes and Vehicle Refinishing Products Regulations 2012 as 'any compound containing at least the element carbon and one or more of hydrogen, oxygen, sulphur, phosphorus, silicon, nitrogen, or a halogen, with the exception of carbon oxides and inorganic carbonates and bicarbonates', with a volatile organic compound being 'any organic compound having an initial boiling point less than or equal to 250°C measured at a standard pressure of 101.3 kPa'
[edit] How is butadiene used and what materials contain it?
Butadiene was isolated from the pyrolysis of amyl alcohol in 1863 by the French chemist E. Caventou and in 1886 identified as the hydrocarbon butadiene by Henry Edward Armstrong isolated within pyrolysis products of petroleum. It has since been used in the chemical and plastics industries, because butadiene-based polymers have improved functionality, performance and safety, as well as lower costs. As such synthetic rubbers that are produced from butadiene for use in shoes, textiles, rubber and construction these include styrene-butadiene rubber, poly-butadiene rubber, styrene-butadiene latex, Acrylonitrile Butadiene Styrene (ABS), Styrene-Butadiene-Styrene (SBS), Styrene butadiene (SBR), chloroprene rubber and nitrile rubber. It is is also used in the refinement of petroleum, secondary lead smelting, water treatment, agricultural fungicide, and in the production of the raw material for nylon. In 2020 global production was estimated at 14.2 million tons, mainly for the polymer industry.
[edit] How is benzene harmful and how is it controlled?
Health effects caused by exposure to 1,3-butadiene are acute or chronic. Low acute exposure causes irritation to the eyes, throat, nose, and lungs and frostbite may also occur with skin exposure. Higher exposure can cause damage to the central nervous system, blurred vision, vertigo, tiredness, decreased blood pressure, headache, nausea, decreased pulse rate, and fainting. Chronic effects are more controversial, with several studies showing an increases in cardiovascular diseases and cancer, though strong causal relationships have only been shown in animal tests it is classified as a known human carcinogen.
Exposure can also occur from polluted air and water near chemical, plastic or rubber facilities; cigarette smoke; and ingestion of foods that are contaminated from plastic or rubber containers, but most likely auto mobile exhaust. Although 1,3-butadiene breaks down quickly in the atmosphere motor vehicle exhausts are a constant low levels source in ambient urban and suburban areas. Levels of emissions from vehicles and pollutants such as benzene and 1,3-butadiene have reduced over recent years as a direct result of air quality control schemes such as: Clean Air Zones in Birmingham, Bradford, Bristol, Portsmouth, Sheffield, and Tyneside (Newcastle and Gateshead). Low Emission Zones (LEZ) such as found in Glasgow as well as Ultra Low Emissions Zones (ULEZ) as introduced to parts of London on 2019.
[edit] Related articles on Designing Buildings
- Building related chemical reactions.
- BSRIA response to clean air strategy.
- COSHH.
- Deleterious materials in construction.
- Environmental legislation for building design and construction.
- Infrastructure under Mayor Sadiq Khan.
- Low emission zone for non-road mobile machinery.
- Sustainability in building design and construction
- Chemical element.
- T-Charge.
- Target emission rate TER
- Types of materials
- Types of plastic.
- Types of plastic in construction.
Featured articles and news
CIAT responds to the updated National Planning Policy Framework
With key changes in the revised NPPF outlined.
Councils and communities highlighted for delivery of common-sense housing in planning overhaul
As government follows up with mandatory housing targets.
CIOB photographic competition final images revealed
Art of Building produces stunning images for another year.
HSE prosecutes company for putting workers at risk
Roofing company fined and its director sentenced.
Strategic restructure to transform industry competence
EBSSA becomes part of a new industry competence structure.
Major overhaul of planning committees proposed by government
Planning decisions set to be fast-tracked to tackle the housing crisis.
Industry Competence Steering Group restructure
ICSG transitions to the Industry Competence Committee (ICC) under the Building Safety Regulator (BSR).
Principal Contractor Competency Certification Scheme
CIOB PCCCS competence framework for Principal Contractors.
The CIAT Principal Designer register
Issues explained via a series of FAQs.
Conservation in the age of the fourth (digital) industrial revolution.
Shaping the future of heritage
Embracing the evolution of economic thinking.
Ministers to unleash biggest building boom in half a century
50 major infrastructure projects, 5 billion for housing and 1.5 million homes.
RIBA Principal Designer Practice Note published
With key descriptions, best practice examples and FAQs, with supporting template resources.
Electrical businesses brace for project delays in 2025
BEB survey reveals over half worried about impact of delays.
Accelerating the remediation of buildings with unsafe cladding in England
The government publishes its Remediation Acceleration Plan.
Airtightness in raised access plenum floors
New testing guidance from BSRIA out now.