Monte Carlo simulation
|
[edit] Introduction
A Monte Carlo simulation is a computational risk analysis tool applied to situations that are uncertain or variable. It is a mathematical way of predicting the outcomes of a situation or set of circumstances by giving a range of possible outcomes and assessing the risk impact of each. It is also referred to as the ‘Monte Carlo method’ or ‘probability simulation’ and is used in many diverse applications such as construction, engineering, finance, project management, insurance, research, transportation and so on.
The name is thought to have been devised by scientists working on the atom bomb in reference to the principality of Monaco – well known for its casinos.
A key characteristic of a Monte Carlo simulation is that it provides a more realistic picture of likely future outcomes by generating a range of possible values, not just a single estimate. In construction, it can be used to predict how long a particular task will take and its likely effect on the programme schedule.
[edit] Mathematical modelling
To begin with, a mathematical model is created using a range of estimates for a particular task. So, for example, a project manager may consider the time it may take to complete a set of tasks by:
- Considering worst case scenarios (ie the maximum expected time values for all variables),
- Considering best-case scenarios (ie the minimum expected time values for all variables).
- Considering the most likely result.
So, for a particular set of tasks on a construction project, the project manager may estimate the following:
| Task | Best case (minimum) | Most likely | Worst case (maximum) |
| Task 1 | 2 weeks | 4 weeks | 7 weeks |
| Task 2 | 3 weeks | 6 weeks | 9 weeks |
| Task 3 | 8 weeks | 13 weeks | 18 weeks |
| Total | 13 weeks | 23 weeks | 34 weeks |
From the table above, it can be seen that the range of outcomes for completing the three tasks ranges from 13 to 34 weeks.
These estimates are inputted into the Monte Carlo simulation which may be run 500 times. The likelihood of a particular result can be tested by counting how many times it was returned in the simulation and a percentage created.
So, it may be that the after 500 simulations, the most likely estimate of 23 weeks completion was only returned 20% of the time (a probability of only 1 in 5). Whereas, completion in 30 weeks was returned 80% of the time (4 in 5), which may be a more realistic basis for the project manager’s decision making.
Note: the extremes may be discounted. It should also be noted that the method is only as good as the original estimates used to create the model. Also, the values outputted are only probabilities but they may give planners a better idea of predicting an uncertain future.
Palisade @RISK for Excel from Palisade Corporation is just one of the available software programmes able to undertake Monte Carlo simulations.
NB The Green Book, Central Government Guidance On Appraisal And Evaluation, Published by HM Treasury in 2018, suggests that: ‘Monte Carlo Analysis is a simulation-based risk modelling technique that produces expected values and confidence intervals as a result of many simulations that model the collective impact of a number of uncertainties.’
[edit] Related articles on Designing Buildings Wiki
- Code of practice for project management.
- Code of practice for programme management.
- Construction project.
- Construction project manager - morning tasks.
- Contingency theory.
- Game theory.
- Microsoft's six ways to supercharge project management.
- Multi criteria decision analysis.
- Project manager.
- Project execution plan.
- Project manager's report.
- Project monitoring.
- Risk management.
Featured articles and news
Do you take the lead in a circular construction economy?
Help us develop and expand this wiki as a resource for academia and industry alike.
Warm Homes Plan Workforce Taskforce
Risks of undermining UK’s energy transition due to lack of electrotechnical industry representation, says ECA.
Cost Optimal Domestic Electrification CODE
Modelling retrofits only on costs that directly impact the consumer: upfront cost of equipment, energy costs and maintenance costs.
The Warm Homes Plan details released
What's new and what is not, with industry reactions.
Could AI and VR cause an increase the value of heritage?
The Orange book: 2026 Amendment 4 to BS 7671:2018
ECA welcomes IET and BSI content sign off.
How neural technologies could transform the design future
Enhancing legacy parametric engines, offering novel ways to explore solutions and generate geometry.
Key AI related terms to be aware of
With explanations from the UK government and other bodies.
From QS to further education teacher
Applying real world skills with the next generation.
A guide on how children can use LEGO to mirror real engineering processes.
Data infrastructure for next-generation materials science
Research Data Express to automate data processing and create AI-ready datasets for materials research.
Wired for the Future with ECA; powering skills and progress
ECA South Wales Business Day 2025, a day to remember.
AI for the conservation professional
A level of sophistication previously reserved for science fiction.
Biomass harvested in cycles of less than ten years.
An interview with the new CIAT President
Usman Yaqub BSc (Hons) PCIAT MFPWS.
Cost benefit model report of building safety regime in Wales
Proposed policy option costs for design and construction stage of the new building safety regime in Wales.
Do you receive our free biweekly newsletter?
If not you can sign up to receive it in your mailbox here.

























Comments
In undertaking a Monte Carlo risk analysis it should be noted that the variables to which the probabilities are assigned should be independent of each other. As an example the price of reinforced concrete and the price of steel are not necessarily independent of each other.