Double glazing
The term 'glazing' refers to the glass component of a building's façade or internal surfaces.
Historically, the external windows of buildings were generally single glazed, consisting of just one layer of glass, however, a substantial amount of heat is lost through single glazing, and it also transmits a significant amount of noise, so mulit-layerd glazing systems were developed such as double glazing and triple glazing.
Double glazing comprises two layers of glass separated by a spacer bar (also known as a profile); a continuous hollow frame typically made of aluminium or a low heat-conductive material. The spacer bar is bonded to the panes using a primary and secondary seal which creates an airtight cavity, typically with 6-20 mm between the two layers of glass. This space is filled with air or with a gas such as argon, which improves the thermal properties of the window. Larger cavities may be provided to achieve greater sound reduction.
A desiccant in the spacer bar absorbs any residual moisture within the cavity, preventing internal misting as a result of condensation.
U-values (sometimes referred to as heat transfer coefficients or thermal transmittances) are used to measure how effective elements of a buildings fabric are as insulators. That is, how effective they are at preventing heat from transmitting between the inside and the outside of a building. Typically, the U-value of single glazing is around 4.8 to 5.8 W/m²K, whilst double glazing is around 1.2 to 3.7 W/m²K. NB Triple can achieve a U-value below 1 W/m²K.
Thermal performance is affected by the quality of the installation, the inclusion of thermal breaks in the frame, suitable weather seals, the gas used to fill the units, and the type of glass used. Low-e glass has a coating added to one or more of its surfaces to reduce its emissivity so that it reflects, rather than absorbs, a higher proportion of long-wave infra-red radiation..
The sound reduction achieved by single glazing (6 mm thick) is typically around 27 dB, whilst double glazing (100 mm air space) is around 42 dB.
The sound reduction achieved by double glazing is affected by:
- Good installation to ensure airtightness
- Sound absorbent linings to the reveals within the air space.
- The weight of glass used – the heavier the glass, the better the sound insulation.
- The size of air space between layers - up to 300 mm.
[edit] Related articles on Designing Buildings Wiki
- Air tightness in buildings.
- BFRC window rating scheme.
- Choosing the correct glazed facade heating system.
- Conservation rooflights.
- Domestic windows.
- Double glazing v triple glazing.
- Glass.
- Glazing.
- Low-E glass.
- Sash windows.
- Secondary glazing.
- Thermal conduction in buildings.
- Triple glazing.
- Types of window.
- U-values.
- Window.
Featured articles and news
Building Safety recap January, 2026
What we missed at the end of last year, and at the start of this...
National Apprenticeship Week 2026, 9-15 Feb
Shining a light on the positive impacts for businesses, their apprentices and the wider economy alike.
Applications and benefits of acoustic flooring
From commercial to retail.
From solid to sprung and ribbed to raised.
Strengthening industry collaboration in Hong Kong
Hong Kong Institute of Construction and The Chartered Institute of Building sign Memorandum of Understanding.
A detailed description fron the experts at Cornish Lime.
IHBC planning for growth with corporate plan development
Grow with the Institute by volunteering and CP25 consultation.
Connecting ambition and action for designers and specifiers.
Electrical skills gap deepens as apprenticeship starts fall despite surging demand says ECA.
Built environment bodies deepen joint action on EDI
B.E.Inclusive initiative agree next phase of joint equity, diversity and inclusion (EDI) action plan.
Recognising culture as key to sustainable economic growth
Creative UK Provocation paper: Culture as Growth Infrastructure.
Futurebuild and UK Construction Week London Unite
Creating the UK’s Built Environment Super Event and over 25 other key partnerships.
Welsh and Scottish 2026 elections
Manifestos for the built environment for upcoming same May day elections.
Advancing BIM education with a competency framework
“We don’t need people who can just draw in 3D. We need people who can think in data.”
Guidance notes to prepare for April ERA changes
From the Electrical Contractors' Association Employee Relations team.
Significant changes to be seen from the new ERA in 2026 and 2027, starting on 6 April 2026.
First aid in the modern workplace with St John Ambulance.
Solar panels, pitched roofs and risk of fire spread
60% increase in solar panel fires prompts tests and installation warnings.
Modernising heat networks with Heat interface unit
Why HIUs hold the key to efficiency upgrades.


























Comments