Smart window coating
Researchers at the University of Oxford have collaborated with industry experts to develop an adaptable smart window technology that could reduce the energy usage of an average home by up to a third.
The new glass has a spectrally tuneable low-emissivity coating that uses a phase change material to control the amount of heat that comes into the room from the window, without affecting the quality of the light.
The thermal energy from the sun's infrared rays is absorbed by the glass and re-emitted as heat – either used to warm the room using transparent electrical heaters in the glass, substrate or reflected away to cool the room.
Dr Nathan Youngblood, formerly at Oxford and now at the University of Pittsburgh, said: "These windows can change according to seasonal needs. They absorb near infrared-light from the sun in the winter and turn it into heat for the inside of a building. In the summer months, the sun can be reflected instead of absorbed."
Working as part of the Wearable and Flexible Technologies Collaboration (WAFT), the project team proposed the heat-activated coating that could 'switch' in line with heating, cooling, and lighting demands.
The team built a prototype with an active chalcogenide-based phase change material so the new glass can adapt to the temperature, to save energy. When it is cold, the infrared rays from the sunlight are harvested and transformed into building heat to cut heating costs. If it is warm, the new glass can switch state to reflect the heat and reduce the need for air conditioning.
The active phase change material is adjustable – for example, 30% of the material is turning away heat while 70% is absorbing and emitting it – for more precise temperature control.
"Importantly, visible light is transmitted almost identically in both states, so you wouldn't notice the change in the window," Dr Youngblood said. "That aesthetic consideration is critical for the adoption of green technologies."
In comparison, the low-emissivity glass or low-E glass used in today's double-glazed homes and offices is inert. A nano-thin metallic reflective coating reflects the UV and infrared waves in sunlight to reduce heat transfer through the glass. Although the principle of reflecting heat when temperatures are warmer and retaining room heat when it is colder outside is the same as the new technology, low-E glass is not as responsive, the University of Oxford claims.
The thermal and optical properties of current windows are ‘set’ into glass coating as part of the manufacturing process – so the only real adjustment for local climate conditions is the choice of coating. Glass with a higher reflectivity property or a solar control coating lets in noticeably less natural light and vice versa, the university asserts.
The researchers estimate that using windows fitted with the new prototype glass – including the energy required to control the film – would save 20 to 34% in energy usage annually compared to double-glazed windows typically found in homes.
Harish Bhaskaran, professor at Oxford's Department of Materials, who led the research and the WAFT consortium, said: "Although significant future research is necessary before this technology can be commercialised, the results show that the concept is very promising and with further research can achieve very good efficiencies."
This article originally appeared as ‘New 'smart' window coating could help heat or cool homes’ on the CIAT website on 14 February 2022.
--CIAT
[edit] Related articles on Designing Buildings
Featured articles and news
Key points for construction at a glance with industry reactions.
Functionality, visibility and sustainability
The simpler approach to specification.
Architects, architecture, buildings, and inspiration in film
The close ties between makers and the movies, with our long list of suggested viewing.
SELECT three-point plan for action issued to MSPs
Call for Scottish regulation, green skills and recognition of electrotechnical industry as part of a manifesto for Scottish Parliamentary elections.
UCEM becomes the University of the Built Environment
Major milestone in its 106-year history, follows recent merger with London School of Architecture (LSE).
Professional practical experience for Architects in training
The long process to transform the nature of education and professional practical experience in the Architecture profession following recent reports.
A people-first approach to retrofit
Moving away from the destructive paradigm of fabric-first.
International Electrician Day, 10 June 2025
Celebrating the role of electrical engineers from André-Marie Amperè, today and for the future.
New guide for clients launched at Houses of Parliament
'There has never been a more important time for clients to step up and ...ask the right questions'
The impact of recycled slate tiles
Innovation across the decades.
EPC changes for existing buildings
Changes and their context as the new RdSAP methodology comes into use from 15 June.
Skills England publishes Sector skills needs assessments
Priority areas relating to the built environment highlighted and described in brief.
BSRIA HVAC Market Watch - May 2025 Edition
Heat Pump Market Outlook: Policy, Performance & Refrigerant Trends for 2025–2028.
Committing to EDI in construction with CIOB
Built Environment professional bodies deepen commitment to EDI with two new signatories: CIAT and CICES.
Government Grenfell progress report at a glance
Line by line recomendation overview, with links to more details.
An engaging and lively review of his professional life.
Sustainable heating for listed buildings
A problem that needs to be approached intelligently.
50th Golden anniversary ECA Edmundson apprentice award
Deadline for entries has been extended to Friday 27 June, so don't miss out!
CIAT at the London Festival of Architecture
Designing for Everyone: Breaking Barriers in Inclusive Architecture.
Mixed reactions to apprenticeship and skills reform 2025
A 'welcome shift' for some and a 'backwards step' for others.