Limit state design
Contents |
[edit] What is limit state design
Loading or other actions imposed on a structure can result in a ‘limit state’, where the structure’s condition no longer fulfils its design criteria, such as; fitness for use, structural integrity, durability, and so on. Limit states are conditions of potential failure.
Limit state design (LSD) is a structural engineering design method. All actions likely to occur during a structure’s design life are considered to ensure that the structure remains fit for use with appropriate levels of reliability. Limit state design involves estimating the subjected loads on a structure, choosing the sizes of members to check, and selecting the appropriate design criteria.
Limit state design requires that two principal criteria are satisfied:
- Ultimate limit state (ULS).
- Serviceability limit state (SLS).
[edit] Ultimate limit state (ULS)
Ultimate limit state (ULS) is design for the safety of a structure and its users by limiting the stress that materials experience.
The ultimate limit state is a purely elastic condition, usually located at the upper part of its elastic zone (approximately 15% lower than the elastic limit). This is in contrast to the ultimate state (US) which involves excessive deformations approaching structural collapse, and is located deeply within the plastic zone.
If all factored bending, shear and tensile or compressive stresses are below the calculated resistances then a structure will satisfy the ULS criterion. Safety and reliability can be assumed as long as this criterion is fulfilled, since the structure will behave in the same way under repetitive loadings.
BS EN 1990 Eurocode – 'Basis of structural design' describes four ultimate limit states:
- EQU: Loss of static equilibrium of the structure.
- STR: Internal failure or excessive deformation of the structure.
- GEO: Failure or excessive deformation of the ground.
- FAT: Fatigue failure of the structure.
[edit] Serviceability limit state (SLS)
Servicability limit state (SLS) is design to ensure a structure is comfortable and useable. This includes vibrations and deflections (movements), as well as cracking and durability. These are the conditions that are not strength-based but still may render the structure unsuitable for its intended use, for example, it may cause occupant discomfort under routine conditions. It might also involve limits to non-structural issues such as acoustics and heat transmission.
Servicability limit state requirements tend to be less rigid than strength-based limit states as the safety of the structure is not in question.
A structure must remain functional for its intended use subject to routine loading in order to satisfy SLS criterion.
[edit] Related articles on Designing Buildings
- Adaptive structures.
- Anticlastic structures.
- Biaxial bending.
- Braced frame.
- Building science.
- Concept structural design of buildings.
- Defects in construction.
- Lateral loads.
- Material utilisation (MUT).
- Shear force.
- Structural engineer.
- Structural steelwork.
- Structural vibration.
- Synclastic.
- Types of structural load.
[edit] External resources
- BGStructural Engineering - LSD
- Handbook of structural steelwork, Eurocode Edition, 2013.
Featured articles and news
First aid in the modern workplace with St John Ambulance.
Ireland's National Residential Retrofit Plan
Staged initiatives introduced step by step.
Solar panels, pitched roofs and risk of fire spread
60% increase in solar panel fires prompts tests and installation warnings.
Modernising heat networks with Heat interface unit
Why HIUs hold the key to efficiency upgrades.
Reflecting on the work of the CIOB Academy
Looking back on 2025 and where it's going next.
Procurement in construction: Knowledge hub
Brief, overview, key articles and over 1000 more covering procurement.
Sir John Betjeman’s love of Victorian church architecture.
Exchange for Change for UK deposit return scheme
The UK Deposit Management Organisation established to deliver Deposit Return Scheme unveils trading name.
A guide to integrating heat pumps
As the Future Homes Standard approaches Future Homes Hub publishes hints and tips for Architects and Architectural Technologists.
BSR as a standalone body; statements, key roles, context
Statements from key figures in key and changing roles.
ECA launches Welsh Election Manifesto
ECA calls on political parties at 100 day milestone to the Senedd elections.
Resident engagement as the key to successful retrofits
Retrofit is about people, not just buildings, from early starts to beyond handover.
Plastic, recycling and its symbol
Student competition winning, M.C.Esher inspired Möbius strip design symbolising continuity within a finite entity.
Do you take the lead in a circular construction economy?
Help us develop and expand this wiki as a resource for academia and industry alike.
Warm Homes Plan Workforce Taskforce
Risks of undermining UK’s energy transition due to lack of electrotechnical industry representation, says ECA.
Cost Optimal Domestic Electrification CODE
Modelling retrofits only on costs that directly impact the consumer: upfront cost of equipment, energy costs and maintenance costs.
The Warm Homes Plan details released
What's new and what is not, with industry reactions.
























Comments
[edit] To make a comment about this article, click 'Add a comment' above. Separate your comments from any existing comments by inserting a horizontal line.