Assessing the performance of Phase Change Materials in buildings
In December 2016, BRE published Assessing the performance of Phase Change Materials in buildings (FB 84), written by Corinne Williams.
Phase Change Materials (PCMs), or latent heat storage materials are an emerging technology in the UK construction industry. They have a large specific latent heat capacity, and can help improve the thermal performance of, and thermal comfort in low thermal mass buildings by lowering the peak temperatures resulting from extreme external temperature changes and preventing overheating.
This publication provides an overview of PCM building products and available methodologies for assessing them. It focusses on PCMs as part of a passive / fabric / thermal mass approach and will be of interest to specifiers, designers, installers, approving authorities, manufacturers, fire safety risk assessors and other interested parties.
The first part provides an introduction to PCM building products, covering; what they are and how they work, their benefits, current technical developments and available products. The second part covers testing and evaluation methodologies for long-term thermal performance, environmental impact, structural performance, health and safety considerations, and performance in fire and quality standards.
Its contents include:
- Acknowledgements
- Executive summary
- Glossary
- Introduction
- Assessment of PCMs and methodologies
- Quality schemes for PCM-specific attributes
- Conclusions and recommendations
- References
- Endnotes
The author Corinne Williams answered some questions about the publication:
| Did you have to test several cocktails during the writing of this publication? |
No! The ice cube example is a simple way to explain how PCMs work. Ice is a commonly used and well-known PCM.
An ice cube absorbs heat from a drink. When the ice cube reaches its melting temperature, it changes phase – from a solid to a liquid – and it absorbs large amounts of energy (at constant temperature) and cools the drink in the process.
| What are PCMs? |
A PCM is a material or substance which when changing its state – for example, from solid to liquid or liquid to solid – is capable of storing or releasing large amounts of energy at a constant temperature (the transition temperature). PCMs are referred to as latent heat storage materials.
| How are PCMs used in construction? |
PCM construction products need to be considered as part of the overall package of temperature control measures in a building and early specialist advice is desirable to ensure they are applied correctly and appropriately.
They can be used to provide thermal mass to buildings with low thermal mass to improve the thermal performance and indoor comfort.
PCMs incorporated into different construction products are available. Most of their applications are for inside buildings, such as ceilings and walls. PCM construction products come in various physical forms such as panels, plaster, boards and tiles and are available for different operating (or transition) temperatures.
PCMs in construction products simply absorb latent heat energy from the indoor environment when they change from solid to liquid when the indoor air temperature reaches the transition temperature, during the day. This process needs to reverse when the temperature drops during the night so the cycle can restart the next day.
| Where are PCMs being used? |
There are a number of demonstration and exemplar buildings where PCMs have been installed, including:
- The east wing of Somerset House, London, using clay boards containing PCM.
- The visitor centre at the BRE Innovation Park, Ravenscraig, Lanarkshire, incorporating a PCM ceiling panel system.
- The BASF Research House at the University of Nottingham, using PCM wall boards.
You can purchase the title at BRE Bookshop.
This article was originally published here on 15 Dec 2016 by BRE Buzz. It was written by Sheila Swan.
--BRE Buzz
[edit] Related articles on Designing Buildings Wiki
Featured articles and news
What they are, how they work and why they are popular in many countries.
Plastic, recycling and its symbol
Student competition winning, M.C.Esher inspired Möbius strip design symbolising continuity within a finite entity.
Do you take the lead in a circular construction economy?
Help us develop and expand this wiki as a resource for academia and industry alike.
Warm Homes Plan Workforce Taskforce
Risks of undermining UK’s energy transition due to lack of electrotechnical industry representation, says ECA.
Cost Optimal Domestic Electrification CODE
Modelling retrofits only on costs that directly impact the consumer: upfront cost of equipment, energy costs and maintenance costs.
The Warm Homes Plan details released
What's new and what is not, with industry reactions.
Could AI and VR cause an increase the value of heritage?
The Orange book: 2026 Amendment 4 to BS 7671:2018
ECA welcomes IET and BSI content sign off.
How neural technologies could transform the design future
Enhancing legacy parametric engines, offering novel ways to explore solutions and generate geometry.
Key AI related terms to be aware of
With explanations from the UK government and other bodies.
From QS to further education teacher
Applying real world skills with the next generation.
A guide on how children can use LEGO to mirror real engineering processes.
Data infrastructure for next-generation materials science
Research Data Express to automate data processing and create AI-ready datasets for materials research.
Wired for the Future with ECA; powering skills and progress
ECA South Wales Business Day 2025, a day to remember.
AI for the conservation professional
A level of sophistication previously reserved for science fiction.
Biomass harvested in cycles of less than ten years.
An interview with the new CIAT President
Usman Yaqub BSc (Hons) PCIAT MFPWS.
Cost benefit model report of building safety regime in Wales
Proposed policy option costs for design and construction stage of the new building safety regime in Wales.
Do you receive our free biweekly newsletter?
If not you can sign up to receive it in your mailbox here.

























