Heat load in buildings
Contents |
[edit] What is heat load?
Heat load (or heating load) in relation to building physics refers to the amount of heating or cooling necessary to maintain the required temperature in a building or space within that building. This can be determined in relation either to the required heating or the required cooling.
The use of passive design can reduce the heat load for a building.
[edit] Required heating
It can be used to refer to the quantity of heat per unit of time (usually over an hour) that is required to heat a given space in order to maintain it at a given temperature. In poorly insulated, poorly sealed buildings, the heat load will be greater than in thermally efficient buildings. In contrast, in a building with a very high level of thermal efficiency, the heating demand can be practically negligible. In Passive houses, this is around 10W/m2 which is roughly 10% of the energy used in conventional buildings.
For more information see: Heating.
[edit] Required cooling capacity
The term heat load can also refer to the capacity required from a cooling system to maintain the temperature in a building or space below a required level. This must take account of all potential heat-producing activities (heat sources). This includes external heat sources such as solar radiation, and internal heat sources such as people, lighting, kitchens, computers and other equipment, and so on.
For example, a data centre housing computers and servers will produce a certain heat load that derives from an electrical load. This heat load will have to be absorbed and conveyed to the exterior by the building’s cooling system. Once the heat load is quantified, building services engineers can design the necessary cooling system to ensure it can effectively keep the space at the desired temperature.
A rough and ready method for calculating heat load in offices containing 2-3 workers and 3-4 computers is given by the following formula:
- Heat load (BTU) = Length (m) x Width (m) x Height (m) x 141
- So, for a room measuring 5m x 4m x 3m = 60 > x 141 = 8,460 BTU.
- (For measurements in feet, the formula becomes: Heat load (BTU) = Length (m) x Width (m) x Height (m) x 4)
Where there are more occupants, add 500 BTU for every additional person:
So, if four extra occupants arrive, the heat load will be:
- 8,460 + (500 x 4) = 10,460 BTU.
Heat load (and heat gain) can also be expressed in kilowatts (kW).
- To convert BTU to kW, 1 BTU = 0.00029307107 kW.
- So, from the example above, 10,460 BTU = 3.065 kW.
The method described above can provide an outline idea of the heat load. More detailed methods should be used to achieve greater accuracy.
For more information see: Cooling.
[edit] Balance point
The term balance point refers to the external temperature below which a building is likely to need to be heated, and above which it is likely to need to be heated to achieve the required internal temperature. This is the point at which the building’s heat gains (people, equipment, solar radiation and so on) are equal to its heat losses (through the building fabric).
It is important that a comfortable internal temperature is set with determining heat loads and balance points.
[edit] Related articles on Designing Buildings
Featured articles and news
Deputy editor of AT, Tim Fraser, discusses the newly formed society with its current chair, Chris Halligan MCIAT.
Barratt Lo-E passivhaus standard homes planned enmasse
With an initial 728 Lo-E homes across two sites and many more planned for the future.
Government urged to uphold Warm Homes commitment
ECA and industry bodies write to Government concerning its 13.2 billion Warm Homes manifesto commitment.
Places of Worship in Britain and Ireland, 1929-1990. Book review.
The emancipation of women in art.
CIOB Construction Manager of the Year 2025
Just one of the winners at the CIOB Awards 2025.
Call for independent National Grenfell oversight mechanism
MHCLG share findings of Building Safety Inquiry in letter to Secretary of State and Minister for Building Safety.
The Architectural Technology Awards
AT Awards now open for this the sixth decade of CIAT.
50th Golden anniversary ECA Edmundson awards
Deadline for submissions Friday 30 May 2025.
The benefits of precast, off-site foundation systems
Top ten benefits of this notable innovation.
Encouraging individuals to take action saving water at home, work, and in their communities.
Takes a community to support mental health and wellbeing
The why of becoming a Mental Health Instructor explained.
Mental health awareness week 13-18 May
The theme is communities, they can provide a sense of belonging, safety, support in hard times, and a sense purpose.
Mental health support on the rise but workers still struggling
CIOB Understanding Mental Health in the Built Environment 2025 shows.
Design and construction material libraries
Material, sample, product or detail libraries a key component of any architectural design practice.
Construction Products Reform Green Paper and Consultation
Still time to respond as consultation closes on 21 May 2025.
Resilient façade systems for smog reduction in Shanghai
A technical approach using computer simulation and analysis of solar radiation, wind patterns, and ventilation.
Comments
[edit] To make a comment about this article, click 'Add a comment' above. Separate your comments from any existing comments by inserting a horizontal line.