Motion sensors
Contents |
[edit] Introduction
Motion, occupancy or vacancy sensors are used in a variety of situations within and around buildings, for security and lighting control as well as more continual in-use monitoring and assessment. A key specification of sensors that monitor use on a more continual basis is that they need to do so whilst maintaining the privacy of individuals and thus comply with the General Data Protection Regulations (GDPR).
Below a variety of different examples are given.
[edit] Passive infrared (PIR) sensors
Passive infrared (PIR) sensors- are small, low powered and cost effective, they sense a changes in temperature between the background and a warm heat emitting body. Everything emits low-level radiation, the pyro-electric sensor detects the differing levels of infrared radiation and thus senses movement or presence. Also called presence detectors these might be used within rooms such as offices, cubicles such as in washrooms or on the underside or desks or tables to detect occupancy.
[edit] Microwave sensors
Microwave sensors have a wider range but are more expensive, vulnerable to electrical interference and with the ability to penetrate surfaces which can cause false alarms. Continuous waves of microwave radiation or a high radio frequency are sent outwards and the reflections off an object are measured by noting the shift in frequency as the waves return.
[edit] Dual tech/hybrid
Dual tech/hybrid sensors are a combination of the above, so that both sensors need to sense changes to cause a trigger which reduces the number of false alarms, from wind movement or temperature changes etc.
[edit] People counters
People counters are a more general term for any of the above that focus on recording the number of occupants at a post or entering and leaving a space, they do so through a variety of technical means.
[edit] Time-of flight
Time-of flight sensors are similar to people counters, often using the reflection of an infrared beam on a sensor, to calculate if occupants are moving towards or away from a point, for example as an entry/exit sensor.
[edit] Infrared arrays
Infrared arrays use the same technology as described above but have greater capacity to detect directional movement within spaces and as such are able to assess how occupants might move around a building or room.
[edit] People flow sensors
People flow sensors, is a more generic term for sensors that can detect more accurately movement in a space in the same way infrared arrays can. These can monitor the real-time movement or flow of people around a space. They only detect movement, not faces, and as such are not cameras which makes them privacy and GDPR compliant.
[edit] Related articles on Designing Buildings
- Access control.
- CCTV.
- Commercial security systems.
- Digital door lock market.
- Distributed fibre-optic strain sensors
- Electric motor.
- Electrical energy.
- Electrical power.
- Entry control.
- Home security solutions market.
- How door locks work.
- MEMS and Sensors Market Segments, Size, Emerging Growth Factors, Top Key Players and Business Opportunities till 2027
- Outbuildings security.
- Perimeter security.
- Proximity access control system.
- Security and the built environment.
- Security glazing.
- Types of alarm.
- Types of door.
- Types of lock.
- Types of sensors.
- Ubiquitous sensors to assess energy consumption and wellbeing in domestic environments
- Visitor door entry system.
- Volatile organic compounds VOC
Featured articles and news
Tackle the decline in Welsh electrical apprenticeships
ECA calls on political parties 100 days to the Senedd elections.
Resident engagement as the key to successful retrofits
Retrofit is about people, not just buildings, from early starts to beyond handover.
What they are, how they work and why they are popular in many countries.
Plastic, recycling and its symbol
Student competition winning, M.C.Esher inspired Möbius strip design symbolising continuity within a finite entity.
Do you take the lead in a circular construction economy?
Help us develop and expand this wiki as a resource for academia and industry alike.
Warm Homes Plan Workforce Taskforce
Risks of undermining UK’s energy transition due to lack of electrotechnical industry representation, says ECA.
Cost Optimal Domestic Electrification CODE
Modelling retrofits only on costs that directly impact the consumer: upfront cost of equipment, energy costs and maintenance costs.
The Warm Homes Plan details released
What's new and what is not, with industry reactions.
Could AI and VR cause an increase the value of heritage?
The Orange book: 2026 Amendment 4 to BS 7671:2018
ECA welcomes IET and BSI content sign off.
How neural technologies could transform the design future
Enhancing legacy parametric engines, offering novel ways to explore solutions and generate geometry.
Key AI related terms to be aware of
With explanations from the UK government and other bodies.
From QS to further education teacher
Applying real world skills with the next generation.
A guide on how children can use LEGO to mirror real engineering processes.
Data infrastructure for next-generation materials science
Research Data Express to automate data processing and create AI-ready datasets for materials research.
Wired for the Future with ECA; powering skills and progress
ECA South Wales Business Day 2025, a day to remember.
AI for the conservation professional
A level of sophistication previously reserved for science fiction.






















