Kevlar in the construction industry
|
[edit] Introduction
Kevlar is a strong, heat-resistant nylon-like polymer invented in 1963 by Stephanie Kwolek, a US-based scientist, as part of her work for chemical giant DuPont. Kwolek had been researching strong, synthetic textile fibres since 1950, particularly their manufacture from long chains of molecules for use in light yet strong tyres.
Kevlar (poly-para-phenylene terephthalamide) is a low weight, high strength material that is stable at high temperature and whose fibres are claimed to be five times stronger than steel per unit weight (in tension). It is used for heat- or flame-resistant fabrics, radial and bicycle tyres, bulletproof vests, walking boots and fibre-reinforced composite materials for aircraft panels, boat hulls and golf-club shafts. It has also been used as a substrate for membranes used in fabric structures.
Like many innovations, Kevlar was discovered almost by accident. Kwolek was looking to create a better way of joining monomers (simple molecules) to polymers (longer chains) through low-temperature fusion. Instead of the clear solution she thought she would achieve, the result was an opaque liquid of low viscosity. When subsequently spun into fibres (ropes or fabric sheets) the liquid created a new type of synthetic material which, unlike nylon, did not break easily. In the patent application, Kwolek described it as a ‘highly orientable, crystallisable, filament-forming polyamide’.
Typically, Kevlar spun-fibres have a tensile strength of around 3,620mPA due to the many inter-chain bonds. Its relatively rigid molecules form mostly planar sheet-like structures which keep their strength and resilience down to around -196°C. At higher temperatures, the strength is slightly reduced.
In 1971, Kevlar was marketed commercially and first used as a steel substitute in racing tyres. More recent uses have included armoured walls for panic rooms, marine current turbines and wind turbines, smartphones, expansion joints and hoses.
In building construction, Kevlar can be formed into a sheet material for roofing, cladding and reinforcing. It was used unsuccessfully on the roof of the Olympic Stadium in Montreal which only lasted 10 years before it had to be renewed. It can be used to protect bank counters and reinforce seismic shear walls. However, it can be problematic to install and when used structurally, the structural calculations can be difficult. It is also very expensive.
Three types of Kevlar and their uses:
- Kevlar – for car- and bicycle-tyre reinforcement to help resist punctures.
- Kevlar 29 – armour for lightweight military vehicles and protection of personnel inside them.
- Kevlar 49 – used in aerospace and marine applications. In boat hulls, it can withstand tensile, torque and twisting forces and is stronger than fibreglass.
[edit] Related articles on Designing Buildings Wiki
Featured articles and news
Do you take the lead in a circular construction economy?
Help us develop and expand this wiki as a resource for academia and industry alike.
Warm Homes Plan Workforce Taskforce
Risks of undermining UK’s energy transition due to lack of electrotechnical industry representation, says ECA.
Cost Optimal Domestic Electrification CODE
Modelling retrofits only on costs that directly impact the consumer: upfront cost of equipment, energy costs and maintenance costs.
The Warm Homes Plan details released
What's new and what is not, with industry reactions.
Could AI and VR cause an increase the value of heritage?
The Orange book: 2026 Amendment 4 to BS 7671:2018
ECA welcomes IET and BSI content sign off.
How neural technologies could transform the design future
Enhancing legacy parametric engines, offering novel ways to explore solutions and generate geometry.
Key AI related terms to be aware of
With explanations from the UK government and other bodies.
From QS to further education teacher
Applying real world skills with the next generation.
A guide on how children can use LEGO to mirror real engineering processes.
Data infrastructure for next-generation materials science
Research Data Express to automate data processing and create AI-ready datasets for materials research.
Wired for the Future with ECA; powering skills and progress
ECA South Wales Business Day 2025, a day to remember.
AI for the conservation professional
A level of sophistication previously reserved for science fiction.
Biomass harvested in cycles of less than ten years.
An interview with the new CIAT President
Usman Yaqub BSc (Hons) PCIAT MFPWS.
Cost benefit model report of building safety regime in Wales
Proposed policy option costs for design and construction stage of the new building safety regime in Wales.
Do you receive our free biweekly newsletter?
If not you can sign up to receive it in your mailbox here.























