Egg-shell concrete
Egg-shell concrete describes the use of crushed eggshell powder as a supplementary cement materials (SCM) helping to improve strength and or reduce the amount of ordinary Portland cement required.
The history of supplementary cementing materials in construction originated with the ancient Greeks who used volcanic ash and hydraulic lime to create cement mortars, and then teh Romans created what we know call Roman concrete, for which the Coliseum is well known, Supplementary cementing materials (SCMs) are materials that when used with Portland cement can contribute to the properties of hardened concrete through hydraulic or pozzolanic activity or both. Most commonly fly ash, ground granulated blast furnace slag (GGBFS) and silica fume are but also some research has been carried out on the use of other waste products including egg-shells as well as saw dust ash, rice husk ash, and sugarcane bagasse ash.
The Magazine of Concrete Research; Eggshell as a partial cement replacement in concrete development (Yeong Yu Tan Shu Ing Doh Siew Choo Chin)
"Research on the reuse of waste materials in the concrete industry has been quite intensive in the past decade. The objective of this research is to identify the performance of oven-dried eggshell powder as a partial cement replacement in the production of concrete under both water-cured and air-cured regimes. Eggshell powder of various amounts, namely 5%, 10%, 15% and 20% by volume, was added as a replacement for ordinary Portland cement."
"The results showed that water-cured eggshell concrete greatly improved the compressive and flexural strength of concrete, by up to 51·1% and 57·8%, respectively. The rate of water absorption of eggshell concrete was reduced by approximately 50%, as eggshell powder filled up the existing voids, making it more impermeable. However, the compressive strength of the eggshell concrete decreases gradually when the amount of eggshell powder increased, during immersion in acid and alkali solutions, because eggshell contains a high amount of calcium, which reacts readily with acid and alkali solutions."
"As the eggshell content increases, the solution reacts with the paste so the bonding of the paste reduces, and therefore the strength also reduces. The reduction of compressive strength during immersion in sulphuric solution and sodium sulphate solution was 27·5% and 31·2%, respectively, when 20% eggshell powder was used to replace cement. It can be concluded that the optimum percentage of oven-dried eggshell powder as a partial cement replacement is 15%."
[edit] External links
Featured articles and news
BSRIA European air conditioning market update 2024
Highs, lows and discrepancy rates in the annual demand.
50 years celebrating the ECA Apprenticeship Awards
As SMEs say the 10 years of the Apprenticeship Levy has failed them.
Nominations sought for CIOB awards
Celebrating construction excellence in Ireland and Northern Ireland.
EPC consultation in context: NCM, SAP, SBEM and HEM
One week to respond to the consultation on reforms to the Energy Performance of Buildings framework.
CIAT Celebrates 60 years of Architectural Technology
Find out more #CIAT60 social media takeover.
The BPF urges Chancellor for additional BSR resources
To remove barriers and bottlenecks which delay projects.
Flexibility over requirements to boost apprentice numbers
English, maths and minimumun duration requirements reduced for a 10,000 gain.
A long term view on European heating markets
BSRIA HVAC 2032 Study.
Humidity resilience strategies for home design
Frequency of extreme humidity events is increasing.
National Apprenticeship Week 2025
Skills for life : 10-16 February
Update on the future of Grenfell Tower
Deputy Prime Minister decides for it be carefully taken down to the ground.
Ending decades of frustration, misinformation and distrust.
Essential tools in managing historically significant landscapes.
Classroom electrician courses a 'waste of money'
Say experts from the Electrical Contractors’ Association.
Wellbeing in Buildings TG 10/2025
BSRIA topic guide updates.