Offshore generation of hydrogen at far-from-shore wind farms
|
| To achieve a zero-carbon future, alternative methods of delivering energy, including its generation and distribution, must be seriously investigated for both technical and commercial viability. Maritime Expert Panel member, Neil Glover, discusses the opportunities for far-from-shore wind farms, and the opportunities for hydrogen that may result. Photo: Rampion windfarm, Nicholas Doherty, Unsplash |
Contents |
[edit] Introduction
As we aspire toward a zero-carbon future, wind farms have already been identified as an important component of our energy mix.
Far-from-shore wind farms are now becoming technologically possible, but face significant challenges. What is not often appreciated is that these would also enable the wider use of hydrogen. An understanding of key aspects of far-from-shore wind turbine design is necessary to appreciate the dual opportunities that could be realised.
[edit] Far-from-shore wind farms
In June 2015, the Carbon Trust report to the Scottish Parliament identified that the UK would require up to 55GW of wind energy by 2050 and that it would be necessary to move to deeper offshore waters to meet this goal. However, moving further from shore does not happen without overcoming some significant engineering challenges.
[edit] Challenges ahead
The move to deeper water will require the development of a new design for turbine foundation. The move to far-from-shore locations also adds new challenges.
Electrical transmission from near-shore wind farms is normally done using high-voltage alternating currents (HVAC). However, as transmission distances approach 100 miles, this option becomes less practical and High Voltage Direct Current (HVDC) systems may be required. HVDC systems require considerably larger and more costly offshore and onshore transformer and converter substations.
[edit] Alternative option – hydrogen generation far from shore
This is where the opportunity for hydrogen comes in. The benefits of hydrogen gas are striking. It emits no carbon dioxide and, if used more widely, would have a major impact on the decarbonisation of our fuel supply.
Heating and transport in particular are major CO2 emitters, and would be ripe for decarbonisation if hydrogen could be used effectively to deliver the offshore wind energy to where it is needed.
Hydrogen is a clean energy vector, whether generated by Steam Methane Reforming and Carbon Capture (SMR+CC) or by one of the several methods of electrolysis. New transportation methods are needed if we are to tap into far-from-shore energy to meet our sustainable, clean energy aspirations.
A far-from-shore wind farm, using floating wind turbines, has the potential to use decommissioned offshore platforms originally constructed for oil and gas production. The Brent platforms are an example that could be used as a hub for the facilities to produce hydrogen by electrolysis.
[edit] Download the ICE briefing paper
To explore this issue further, Neil Glover has authored an ICE briefing sheet which delves deeper into the opportunity and challenges ahead for hydrogen development, presenting some exciting alternative solutions to generate and distribute far from shore.
[edit] About this article
This article was written by ice.org.uk Neil Glover, ICE Maritime Expert Panel member. It previously appeared on the ICE website in November 2019 and can be accessed HERE.
Other articles by the ICE on Designing Buildings Wiki can be accessed HERE.
[edit] Related articles on Designing Buildings Wiki
- Environmental Impact Assessment.
- Nationally significant infrastructure projects.
- Planning now for hydrogen.
- Renewable energy.
- Steam methane reforming.
- Strategic Environmental Assessment.
- Wind Energy in the United Kingdom.
- Wind turbine.
[edit] External references
Featured articles and news
Building Safety recap January, 2026
What we missed at the end of last year, and at the start of this...
National Apprenticeship Week 2026, 9-15 Feb
Shining a light on the positive impacts for businesses, their apprentices and the wider economy alike.
Applications and benefits of acoustic flooring
From commercial to retail.
From solid to sprung and ribbed to raised.
Strengthening industry collaboration in Hong Kong
Hong Kong Institute of Construction and The Chartered Institute of Building sign Memorandum of Understanding.
A detailed description fron the experts at Cornish Lime.
IHBC planning for growth with corporate plan development
Grow with the Institute by volunteering and CP25 consultation.
Connecting ambition and action for designers and specifiers.
Electrical skills gap deepens as apprenticeship starts fall despite surging demand says ECA.
Built environment bodies deepen joint action on EDI
B.E.Inclusive initiative agree next phase of joint equity, diversity and inclusion (EDI) action plan.
Recognising culture as key to sustainable economic growth
Creative UK Provocation paper: Culture as Growth Infrastructure.
Futurebuild and UK Construction Week London Unite
Creating the UK’s Built Environment Super Event and over 25 other key partnerships.
Welsh and Scottish 2026 elections
Manifestos for the built environment for upcoming same May day elections.
Advancing BIM education with a competency framework
“We don’t need people who can just draw in 3D. We need people who can think in data.”
Guidance notes to prepare for April ERA changes
From the Electrical Contractors' Association Employee Relations team.
Significant changes to be seen from the new ERA in 2026 and 2027, starting on 6 April 2026.
First aid in the modern workplace with St John Ambulance.
Solar panels, pitched roofs and risk of fire spread
60% increase in solar panel fires prompts tests and installation warnings.
Modernising heat networks with Heat interface unit
Why HIUs hold the key to efficiency upgrades.

























