Carbon capture processes
Contents |
[edit] Introduction
Carbon capture is a process that can remove as much as 90% of the carbon dioxide (CO2) gas emitted from fossil fuel (coal, oil or gas) power stations which are the main source of anthropogenic CO2 emissions. But the process is also used in cement making and other industries, and can be used to extract carbon from the atmosphere.
Carbon capture has been used for decades by the oil and gas sectors, although long-term storage of CO2 is a relatively new activity. It is thought that carbon capture could achieve around 20% of the total greenhouse gas emissions reductions needed to achieve 2050 targets. It is seen as one of the few practical ways to efficiently decarbonise the industrial sector quickly.
[edit] Carbon capture and storage (CCS)
CO2 captured from industrial processes is captured for secure and indefinite storage. In the UK storage of large quantities of CO2 is likley to take place in offshore underground saline formations or depleted oil and gas fields.
Although at the time of writing there are around 17 operating CCS projects globally, there are no commercial-scale CCS projects in the UK, but relevant health and safety regulations exist for future operators to abide by.
There are three stages to carbon capture and storage:
- CO2 is trapped and separated from other gases.
- CO2 is transported to a storage site.
- CO2 is stored away from the atmosphere.
[edit] Trapping and separating CO2
There are three ways to extract CO2:
- Post-combustion capture - applied mostly to power plants, post-combustion capture involves capturing the CO2 from the flue gases produced by fossil-fuel combustion. Typically, chemical solvents are used to achieve this. The technology can be retrofitted to existing power plants.
- Pre-combustion - this process involves removing the CO2 before combustion takes place in chemical, fertilizer, gaseous fuel and power production processes. Rather than being combusted, fuel is ‘gassified’ to produce a synthetic gas (syngas). The carbon monoxide (CO) from this is converted to CO2 which, after the action of solvents, is freed from the hydrogen present.
- Oxy-fuel combustion - fossil fuel is burned in oxygen to produce a steam-CO2 mixture from which the CO2 is separated by cooling and compression. This is a relatively expensive process becuase of the amount of oxygen required, however it ensures that only around 10% of a power plant’s emissions enter the atmosphere.
It may also be possible to extract CO2 from ambient air (direct air capture), although it is more difficult than the aforementioned processes due to the lower concentration of the gas in air. Work on this is still at an early stage.
[edit] Transportation of CO2
Once captured, CO2 must be transported to suitable sites for permanent storage. Conveyance is mostly by pipeline as this is one of the cheapest methods for large volumes. CO2 can also be transported – eg by ships – to other locations for industrial use.
[edit] Storing CO2
The three techniques available for storing CO2 are:
- In deep geological formations.
- In deep ocean water.
- In the form of mineral carbonates (mineral storage).
For more information see: http://www.bgs.ac.uk/discoveringGeology/climateChange/CCS/howcanCO2bestored.html
[edit] Related articles on Designing Buildings
- Carbon dioxide capture and utilisation.
- Carbon capture and storage.
- Carbon emissions.
- Carbon footprint.
- Carbon Reduction Commitment Energy Efficiency Scheme.
- Climate change act.
- Climate change science.
- Government publishes 2021 guidance on carbon capture technologies.
- Greenhouse gases.
- Environmental impact.
- Ozone depleting substances.
- UK Climate Change Risk Assessment.
- Using CO2 to make construction products and materials.
Featured articles and news
RTPI leader to become new CIOB Chief Executive Officer
Dr Victoria Hills MRTPI, FICE to take over after Caroline Gumble’s departure.
Social and affordable housing, a long term plan for delivery
The “Delivering a Decade of Renewal for Social and Affordable Housing” strategy sets out future path.
A change to adoptive architecture
Effects of global weather warming on architectural detailing, material choice and human interaction.
The proposed publicly owned and backed subsidiary of Homes England, to facilitate new homes.
How big is the problem and what can we do to mitigate the effects?
Overheating guidance and tools for building designers
A number of cool guides to help with the heat.
The UK's Modern Industrial Strategy: A 10 year plan
Previous consultation criticism, current key elements and general support with some persisting reservations.
Building Safety Regulator reforms
New roles, new staff and a new fast track service pave the way for a single construction regulator.
Architectural Technologist CPDs and Communications
CIAT CPD… and how you can do it!
Cooling centres and cool spaces
Managing extreme heat in cities by directing the public to places for heat stress relief and water sources.
Winter gardens: A brief history and warm variations
Extending the season with glass in different forms and terms.
Restoring Great Yarmouth's Winter Gardens
Transforming one of the least sustainable constructions imaginable.
Construction Skills Mission Board launch sector drive
Newly formed government and industry collaboration set strategy for recruiting an additional 100,000 construction workers a year.
New Architects Code comes into effect in September 2025
ARB Architects Code of Conduct and Practice available with ongoing consultation regarding guidance.
Welsh Skills Body (Medr) launches ambitious plan
The new skills body brings together funding and regulation of tertiary education and research for the devolved nation.
Paul Gandy FCIOB announced as next CIOB President
Former Tilbury Douglas CEO takes helm.
UK Infrastructure: A 10 Year Strategy. In brief with reactions
With the National Infrastructure and Service Transformation Authority (NISTA).