Effective ventilation in buildings
Contents |
[edit] Introduction
The World Health Organisation has published information about the airborne transmission of COVID-19. This information further emphasises the importance of having good, effective ventilation in a building.
[edit] Air change rates
Ensuring correct air change rates in an occupied space has always been an important design consideration - one perhaps perceived as only being critical in healthcare settings. Given our ‘new normal’, the emphasis on correct air change rates across all occupied settings is becoming crucial.
The air change rate (ACR) in a room is a function of the ventilation supply or extract flowrate (in l/s or m³/h) and a function of the volume of the room (m³). The resultant air change rate, normally expressed as air changes per hour (ACH) (h-1), gives us an indication of how many times per hour the ventilation system provides the room with new fresh air.
Ventilation is paramount to dilute the concentration of airborne contaminants and it is important to understand how contaminants are diluted, in order to establish procedures, i.e. time that has to pass between patients entering a room in a hospital.
[edit] Making calculations
By means of visualising the air change rate in a room, if we have an empty glass simulating our room - which is sitting under a tap acting as our ventilation system - and the tap is turned on the equivalent air change rate is a count of how many times the glass can be filled with water in a certain period of time. If some or all of the water misses the glass and goes directly down the drain, the air change rate is effectively reduced. As in the case of a ventilation system, consideration would also need to be given as to what the consequences may be if the tap water were contaminated.
If the source of contaminants is still in the room, the ventilation system will eventually provide a steady state concentration of contaminants, which is diluted if compared to the source. If there are (airborne) contaminants in the room, but the source has left (e.g. the patient has left the surgery) the ventilation system will purge the contaminants with every air change.
The decay of the concentration can be expressed by the equation:
[Please click on the image to see the equation.]
We do have to take into account the fact that the air supplied must be fresh, i.e. not recirculated and that the ventilation must be effective; fresh air must not be short circuited into the extract and it must reach everywhere in the room, to avoid areas of high contaminant concentration (stagnation).
[Please click on the image to see the equation.]
This means that it will take longer to purge the contaminant from the room i.e. If the ACR of an isolation room is 10 ACH, for a k value of 0.6, the effective ventilation rate would be 6 ACH.
BSRIA has studied several hospital isolation rooms with dedicated ventilation. The k factor in those rooms, which were considered well-mixed, was k= 0.8, calculated using gas tracer methodologies.
This article originally appeared on the BSRIA website under the title, "New World Health Organisation information emphasises effective ventilation in buildings." It was published July 2020.
--BSRIA
[edit] Related articles on Designing Buildings
- Air change rates.
- Air filtration and clean Indoor air quality standards.
- Air tightness in buildings.
- At a glance - Indoor air quality.
- BSRIA articles on Designing Buildings Wiki.
- Ensuring good indoor air quality in buildings.
- HVAC balancing.
- HVAC industry defines post COVID-19 changes.
- Indoor air quality.
- Indoor air velocity.
- Let us evolve our buildings from being passive structures to interactive and reactive systems.
- Mechanical ventilation's role in improving indoor air quality.
- Timber and healthy interiors.
- Ventilation.
- Ventilation and control of COVID-19 transmission.
[edit] External resources
Featured articles and news
Building Safety recap January, 2026
What we missed at the end of last year, and at the start of this...
National Apprenticeship Week 2026, 9-15 Feb
Shining a light on the positive impacts for businesses, their apprentices and the wider economy alike.
Applications and benefits of acoustic flooring
From commercial to retail.
From solid to sprung and ribbed to raised.
Strengthening industry collaboration in Hong Kong
Hong Kong Institute of Construction and The Chartered Institute of Building sign Memorandum of Understanding.
A detailed description fron the experts at Cornish Lime.
IHBC planning for growth with corporate plan development
Grow with the Institute by volunteering and CP25 consultation.
Connecting ambition and action for designers and specifiers.
Electrical skills gap deepens as apprenticeship starts fall despite surging demand says ECA.
Built environment bodies deepen joint action on EDI
B.E.Inclusive initiative agree next phase of joint equity, diversity and inclusion (EDI) action plan.
Recognising culture as key to sustainable economic growth
Creative UK Provocation paper: Culture as Growth Infrastructure.
Futurebuild and UK Construction Week London Unite
Creating the UK’s Built Environment Super Event and over 25 other key partnerships.
Welsh and Scottish 2026 elections
Manifestos for the built environment for upcoming same May day elections.
Advancing BIM education with a competency framework
“We don’t need people who can just draw in 3D. We need people who can think in data.”
Guidance notes to prepare for April ERA changes
From the Electrical Contractors' Association Employee Relations team.
Significant changes to be seen from the new ERA in 2026 and 2027, starting on 6 April 2026.
First aid in the modern workplace with St John Ambulance.
Solar panels, pitched roofs and risk of fire spread
60% increase in solar panel fires prompts tests and installation warnings.
Modernising heat networks with Heat interface unit
Why HIUs hold the key to efficiency upgrades.

























