Torsion Springs and Their Benefits
Contents |
Introduction
Torsion springs are widely used in many different industries, from construction and rail to architecture and aerospace. Their helical design allows them to exert rotary force and is ideal for when there is a need for angular movement with the legs of the spring attached to other components.
What are Torsion Springs?
These springs can store and release angular energy or just hold a mechanism in place. They are made to provide or maintain a rotational pressure between two surfaces by allowing components to rotate around the centre of the spring, which attempts to push them back to their original position. In a general manner, torsion springs should be created to spring in the opposite direction as the coil, as they will not be able to withstand heavier weights if otherwise.
However, because there are so many different designs, they are capable of meeting many different requirements and fit a wealth of applications.
Materials Used for Torsion Springs
A lot of materials have the ability to bend without breaking, while others do not. It is crucial that the materials chosen for springs, including for torsion springs, can flex without breaking. Some of the most common materials for springs include (but are not limited to):
- High carbon steels – the most common materials for springs. They might need extra corrosive protection like pre-galvanised coating.
- Stainless steels – perhaps the most important alloy steel for springs, stainless steel has a high degree of corrosion and heat resistance.
- Alloy steels – common alloy steels include chrome vanadium and chrome silicon. They’re suitable for shock loads, such as engine valve springs.
- Non-ferrous alloys – these alloys are best suited for applications that require good electrical conductivity.
- High-temperature alloys – metals like cold drawn nickel and chromium alloys are suitable for applications that need good corrosion resistance at elevated temperatures.
Applications of Torsion Springs
Torsion springs can be used in a wide variety of circumstances, objects and mechanisms. They are common in everyday objects as well. Amongst some of their most popular applications are clothespins, door hinges, paper cutters, vehicle suspensions, watches, clipboards, mousetraps, switches, and much more.
Advantages of Torsion Springs
Torsion springs provide many benefits to the objects and mechanisms they are used in, which adds to their popularity. Key benefits of these springs include:
- Durable – they last for a long time and provide good value for money
- Easy to use – for example, torsion springs can be adjusted easily in vehicles
- Small – the relatively small size of torsion springs allows them to fit many applications, even with limited space
Find Out More
Related articles on Designing Buildings Wiki
- Compression springs.
- Flat springs.
- Key Qualities of Springs.
- The Importance of Gas Springs.
- Large and Hot Coiled Compression Springs
- Springs in Structures
- The Multiple Uses of Compression Springs
- The Properties of Die Springs
- Tension springs v torsion springs
- The Difference Between Tension and Torsion Springs
- Torsion.
- Types of spring.
Featured articles and news
The average kinetic energy of molecules
Temperature in buildings, explained on DB
Women and unequal pay in project management
Main barrier to entering the profession, new study reveals.
IHBC’s response to Parliamentary Committee
On Levelling-Up and Regeneration Bill.
Finalists for 2022 CIOB Awards revealed
Over 70 managers and organisations shortlisted for the 14 awards.
Types of building sensors on BD
From biometric to electrical current, chemical and more.
Government mandates detectors in rented homes
Changes are due to come into force on 1st October 2022.
80% of major government projects are rated red or amber
Heed advice and insight of this report IPA tells the government.
The end of the games but continued calls for action
From the Commonwealth Association of Architects.
CIOB respond to the government call for evidence
For the Levelling Up, Housing & Communities Committee.
How are buildings and their occupants responding to extreme heat?
BSRIA's Technical Director reflects on recent weather patterns.
Landownership in England in 1909
A national valuation to fund old-age pensions.
The world’s largest Commonwealth memorial to the missing.
Long after the end of the defects liability period.
BSRIA Occupant Wellbeing survey BOW
Occupant satisfaction and wellbeing in buildings.
Geometric form and buildings in brief
From the simple to the complex.
Understanding the changing nature of insulation
And the UK Government guidelines.
Three year action plan to improve equity, diversity and inclusion
Commitment agreed to by major built environment bodies.
The Construction Route – what needs to change?
Electrical skills, low carbon, high-tech and the building services revolution.
Deep geothermal power possibilities
Ultra-deep drilling with millimeter-wave beam technology.
BSRIA Briefing 2022- From the outside looking in
Looking at the built environment from space.
Competence requirements for principal contractors and designers
BSI standards 8671, 8672 and 8673.
Bringing life to burial grounds.
From failed modernism to twenty-minute neighbourhoods.
Design chill and design freeze
The gates process and change control.