Heating ventilation air conditioning and refrigeration
HVACR refers to Heating, Ventilation, Air Conditioning, and Refrigeration, that is, the technology, systems, and processes used for maintaining indoor air quality and thermal comfort in buildings providing cooling refrigeration.
The terms HVAC and HVACR are closely related and are often used interchangeably. However, HVAC refers to Heating, Ventilation, and Air Conditioning systems which typically do not include refrigeration components for preserving perishable items such as food as well as some industrial processes.
For more information see: HVAC.
Here are some common examples of how HVACR is used in buildings:
- In cold weather, HVACR systems provide heating to keep indoor spaces warm and comfortable. This is generally achieved by distributing warm air or water throughout a building. For more information see: Heating.
- In warm weather, or for buildings that generate a lot of heat, HVACR systems provide cooling to keep indoor spaces cool and comfortable. For more information see: Cooling.
- HVACR systems also help to circulate and exchange air within a building, which can improve indoor air quality and reduce the spread of airborne contaminants. For more information see: Ventilation.
- HVACR systems can also help to regulate indoor humidity levels, which can affect the comfort and health of occupants. This can be done using dehumidifiers, humidifiers, or other types of humidity control equipment. For more information see: Air conditioning.
- HVACR systems are also used in buildings to provide refrigeration for food storage and preservation as well as some industrial processes. This can be done using refrigerators, freezers, and other types of cooling equipment. For more information see: Refrigeration.
Proper design, installation, maintenance, and operation of HVACR systems is critical for ensuring optimal performance, comfort and energy efficiency.
The future of HVACR is likely to be shaped by technological advancements, energy efficiency goals, greater emphasis on occupant health and safety and evolving industry standards and regulations:
- Smart HVACR systems are expected to become more prevalent as advances in sensors, controls, and connectivity make it easier to monitor and optimise HVACR performance in real-time. Smart HVACR systems can also help to reduce energy consumption and costs by adjusting settings based on occupancy patterns, weather conditions, and other factors.
- As the world continues to focus on reducing greenhouse gas emissions and combatting climate change, HVACR systems are expected to become more energy-efficient and environmentally friendly. This may involve the use of alternative refrigerants, more efficient heating and cooling technologies, improved insulation and reduced air infiltration.
- HVACR systems are likely to become more integrated with renewable energy sources, this can help to reduce energy costs and carbon emissions while providing more sustainable heating and cooling.
- The COVID-19 pandemic has highlighted the importance of indoor air quality in maintaining occupant health and safety. HVACR systems are expected to play a key role in improving indoor air quality by providing better ventilation, filtration, and humidity control.
[edit] Related articles on Designing Buildings
- Air conditioning.
- Air handling unit.
- Building management systems.
- Building services
- Cooling.
- Dehumidification.
- Heat recovery.
- Heating.
- Humidity.
- Mechanical, electrical and plumbing MEP.
- Mechanical ventilation.
- Natural ventilation.
- Plant room.
- Smart connected HVAC market.
- Thermal comfort.
- Ventilation.
- HVAC.
- Refrigeration.
Featured articles and news
What they are, how they work and why they are popular in many countries.
Plastic, recycling and its symbol
Student competition winning, M.C.Esher inspired Möbius strip design symbolising continuity within a finite entity.
Do you take the lead in a circular construction economy?
Help us develop and expand this wiki as a resource for academia and industry alike.
Warm Homes Plan Workforce Taskforce
Risks of undermining UK’s energy transition due to lack of electrotechnical industry representation, says ECA.
Cost Optimal Domestic Electrification CODE
Modelling retrofits only on costs that directly impact the consumer: upfront cost of equipment, energy costs and maintenance costs.
The Warm Homes Plan details released
What's new and what is not, with industry reactions.
Could AI and VR cause an increase the value of heritage?
The Orange book: 2026 Amendment 4 to BS 7671:2018
ECA welcomes IET and BSI content sign off.
How neural technologies could transform the design future
Enhancing legacy parametric engines, offering novel ways to explore solutions and generate geometry.
Key AI related terms to be aware of
With explanations from the UK government and other bodies.
From QS to further education teacher
Applying real world skills with the next generation.
A guide on how children can use LEGO to mirror real engineering processes.
Data infrastructure for next-generation materials science
Research Data Express to automate data processing and create AI-ready datasets for materials research.
Wired for the Future with ECA; powering skills and progress
ECA South Wales Business Day 2025, a day to remember.
AI for the conservation professional
A level of sophistication previously reserved for science fiction.
Biomass harvested in cycles of less than ten years.
An interview with the new CIAT President
Usman Yaqub BSc (Hons) PCIAT MFPWS.
Cost benefit model report of building safety regime in Wales
Proposed policy option costs for design and construction stage of the new building safety regime in Wales.
Do you receive our free biweekly newsletter?
If not you can sign up to receive it in your mailbox here.

























Comments
[edit] To make a comment about this article, or to suggest changes, click 'Add a comment' above. Separate your comments from any existing comments by inserting a horizontal line.