G-value in buildings
Understanding the solar transmittance through translucent and transparent materials such as glass is important for determining the solar heat gain into the space they enclose during sunny conditions. Solar heat gain can be beneficial in the winter, as it reduces the need for heating, but in the summer can cause overheating.
The total solar heat transmittance through transparent and translucent materials is equal to the solar heat that is transmitted through the material directly, plus the solar heat that is absorbed by the material and then re-emitted into the enclosed space.
Traditionally this was expressed in terms of a shading coefficient which described the amount of solar heat transmitted through a material compared to the amount of solar heat transmitted through a standard sheet of clear float glass 3 mm thick.
However, manufacturers are now moving away from shading coefficients. In the USA, they are moving towards the use of solar heat gain coefficients (SHGC) and in Europe, g-values (window solar factors, solar factors or total energy transmittance (TET)). In essence, these both represent the fraction of incident solar radiation transmitted by a window, expressed as a number between 1 and 0, where 1 indicates the maximum possible solar heat gain, and zero, no solar heat gain.
g-value = total solar heat gain / incident solar radiation
The difference between g-values and solar heat gain coefficients is that they use a different value for air mass.
g-values can refer to the centre-of-glass g-value, or can relate to the entire window, including frame (gglass or gwindow). Generally, a higher g-value will be beneficial in cooler climates and a lower g-value in warmer climates. Typically g-values will range between 0.2 and 0.7, with solar control glazing having a g-value of less than 0.5.
[edit] Related articles on Designing Buildings Wiki
- BREEAM.
- Code for Sustainable Homes.
- Computational fluid dynamics (CFD).
- Emission rates.
- Emissivity.
- Energy certificates.
- Environmental legislation.
- Green deal.
- Leadership in Energy and Environmental Design.
- Low-e glass.
- Shading coefficient.
- Solar heat gain coefficient.
- Solar transmittance (gtot).
- Sustainability.
- Thermal bridge.
- Thermal resistance.
- U value.
- Zero carbon homes.
- Zero carbon non-domestic buildings.
Featured articles and news
Heat Pump demand rises by one quarter.
As energy prices jump up in cost.
With people in the UK from Ukraine.
Industry leader Steve Murray takes on role.
An abundant and versatile building material.
How overheating complicates ending gas in the UK.
600,000 heat pump installations targeted per year by 2028.
Cost planning, control and related articles on DB.
Helping prevent those unwanted outcomes.
ICE debate Public transport - post pandemic.
How has transport changed due to Covid-19 ?
Cross-ventilation in buildings. Do you have it ?
Will you need it ? after June 15 and the new Part O ?
Share your knowledge with the industry.
Create an account and write the first of many articles.
The green jobs delivery group.
CIAT commentary after the first meeting.
Liverpool's world heritage site status
Who is to blame?
Research recommends focussing on portfolio success rather than project success.
ICE and BSI launch revised PAS 128 standard.
The revised standard for mapping underground utilities.
Launching the UK net zero carbon buildings standard.
Cross-industry steering group seeks support in delivery.
Comments