Thermal expansion
Variations in the temperature of a structure can result in thermal movements of its constituent parts. Most building materials will expand with rises in temperature caused (in most cases) by solar heat gains. In many solid materials (i.e not liquids), the expansion will usually be greater along the long dimension of the material as opposed to the short. Liquids tend to expand in all directions when heated.
Different materials are likely to have different rates of thermal expansion. Indeed, it is possible for variations to exist even among samples of the same material. The degree to which solid materials expand as a result of temperature change is expressed by their coefficient of linear thermal expansion (CLTE). The expansion of a material can be calculated from the percentage change in its length per degree of temperature change, its length, and the change in temperature.
Knowing the coefficients of expansion allows designers to calculate how much thermal movement to accommodate (particularly on a hot summer’s day when there are solar heat gains will be higher) by allowing for expansion joints.
Thermal movements tend to be reversible, i.e for every millimetre of expansion, there will usually be the same amount of contraction as the temperature drops.
In the UK, the typical seasonal variations in temperature – i.e between a hot summer’s day and a cold winter’s night – can be as much as 30°C. This can induce strain and damage a building. When materials are restrained excessively and cannot expand, the release of built-up internal stresses can result in cracking, bowing, buckling and other forms of deformation. For example, in brickwork, thermal expansion can cause cracking of both mortar and bricks, allowing rainwater to penetrate through the external leaf.
Long wall panels to low rise buildings such as Bungalows/ single storey masonry structures will "slide" along the DPC. Predominant in structures formed during the 1940's and 1950's, brickwork either end of the wall panel may "overhang" masonry below the DPC.
Expansion joints usually prevent this happening.
In brickwork, 10mm-wide vertical expansion joints filled with a suitable filler material can allow for thermal expansion and are typically installed every 10m-12m for main walling runs. But in freestanding walls and parapets, this is usually reduced to 6m-8m because these constructions are typically more exposed to the elements and have less weight above them (and therefore less restraint).
Thermal expansion in masonry wall panels with large openings or openings that result in a reduced wall panel size locally may exhibit cracks forming as a result of a "stress concentration", particaularly if the elevaiton is south facing.
Movement in the vertical plane should also be considered and accommodated with a horizontal movement joint (sometimes referred to as a ‘soft joint’) at the appropriate spacing.
Lead, zinc and copper can be formed (in roof applications) with traditional ‘drips’ which are steps that break up the length and accommodate thermal expansion. Alternatively, a rubber (neoprene) expansion joint can be used.
Expansion joints are typically filled with a material capable of being compressed by up to around 50% of its original thickness and which can recover after the thermal movement is reversed.
NB AR5 Climate Change 2014: Impacts, Adaptation, and Vulnerability, Glossary, published by the Intergovernmental Panel on Climate Change (IPCC) states in relation to thermal expansion: ‘In connection with sea level, this refers to the increase in volume (and decrease in density) that results from warming water. A warming of the ocean leads to an expansion of the ocean volume and hence an increase in sea level.’
[edit] Related articles on Designing Buildings
Featured articles and news
Deputy editor of AT, Tim Fraser, discusses the newly formed society with its current chair, Chris Halligan MCIAT.
Barratt Lo-E passivhaus standard homes planned enmasse
With an initial 728 Lo-E homes across two sites and many more planned for the future.
Government urged to uphold Warm Homes commitment
ECA and industry bodies write to Government concerning its 13.2 billion Warm Homes manifesto commitment.
Places of Worship in Britain and Ireland, 1929-1990. Book review.
The emancipation of women in art.
CIOB Construction Manager of the Year 2025
Just one of the winners at the CIOB Awards 2025.
Call for independent National Grenfell oversight mechanism
MHCLG share findings of Building Safety Inquiry in letter to Secretary of State and Minister for Building Safety.
The Architectural Technology Awards
AT Awards now open for this the sixth decade of CIAT.
50th Golden anniversary ECA Edmundson awards
Deadline for submissions Friday 30 May 2025.
The benefits of precast, off-site foundation systems
Top ten benefits of this notable innovation.
Encouraging individuals to take action saving water at home, work, and in their communities.
Takes a community to support mental health and wellbeing
The why of becoming a Mental Health Instructor explained.
Mental health awareness week 13-18 May
The theme is communities, they can provide a sense of belonging, safety, support in hard times, and a sense purpose.
Mental health support on the rise but workers still struggling
CIOB Understanding Mental Health in the Built Environment 2025 shows.
Design and construction material libraries
Material, sample, product or detail libraries a key component of any architectural design practice.
Construction Products Reform Green Paper and Consultation
Still time to respond as consultation closes on 21 May 2025.
Resilient façade systems for smog reduction in Shanghai
A technical approach using computer simulation and analysis of solar radiation, wind patterns, and ventilation.