Advanced manufacturing
'Advanced manufacturing' is a very broad term that refers to a range of modern techniques and practices involving the latest developments in technology.
It includes all aspects of the manufacturing process from design through to production and is commonly described as including (amongst many others) advanced forms of:
- Materials.
- Computer aided design and computer aided manufacturing (CAD/CAM).
- Offsite manufacturing.
- Prefabrication and preassembly.
- Automation, robotics and other intelligent production systems.
- High precision technologies: Laser processing, electrical machining and mechanical machining.
- Modelling techniques such as building information modelling and finite element modelling.
- 3D printing (additive manufacturing).
- Sustainable and green technologies and processes.
[edit] Related articles on Designing Buildings
- 3D printing.
- Advanced construction technology.
- Advanced manufacturing technology.
- Agile.
- Block planning.
- Building technology.
- Construction innovation.
- Construction Innovation Hub.
- Design for Manufacture and Assembly (DfMA).
- Dynamic conditions for project success.
- Lean construction.
- Line of balance (LOB).
- Modern methods of construction.
- Offsite manufacturing.
- Off-site manufacturing.
- Off site, on track.
- Platform approach to design for manufacture and assembly.
- Understanding agile in project management.
Featured articles and news
What they are, how they work and why they are popular in many countries.
Plastic, recycling and its symbol
Student competition winning, M.C.Esher inspired Möbius strip design symbolising continuity within a finite entity.
Do you take the lead in a circular construction economy?
Help us develop and expand this wiki as a resource for academia and industry alike.
Warm Homes Plan Workforce Taskforce
Risks of undermining UK’s energy transition due to lack of electrotechnical industry representation, says ECA.
Cost Optimal Domestic Electrification CODE
Modelling retrofits only on costs that directly impact the consumer: upfront cost of equipment, energy costs and maintenance costs.
The Warm Homes Plan details released
What's new and what is not, with industry reactions.
Could AI and VR cause an increase the value of heritage?
The Orange book: 2026 Amendment 4 to BS 7671:2018
ECA welcomes IET and BSI content sign off.
How neural technologies could transform the design future
Enhancing legacy parametric engines, offering novel ways to explore solutions and generate geometry.
Key AI related terms to be aware of
With explanations from the UK government and other bodies.
From QS to further education teacher
Applying real world skills with the next generation.
A guide on how children can use LEGO to mirror real engineering processes.
Data infrastructure for next-generation materials science
Research Data Express to automate data processing and create AI-ready datasets for materials research.
Wired for the Future with ECA; powering skills and progress
ECA South Wales Business Day 2025, a day to remember.
AI for the conservation professional
A level of sophistication previously reserved for science fiction.
Biomass harvested in cycles of less than ten years.
An interview with the new CIAT President
Usman Yaqub BSc (Hons) PCIAT MFPWS.
Cost benefit model report of building safety regime in Wales
Proposed policy option costs for design and construction stage of the new building safety regime in Wales.
Do you receive our free biweekly newsletter?
If not you can sign up to receive it in your mailbox here.

























Comments
"Advanced manufacturing" refers to the use of cutting-edge technologies, processes, and techniques to improve the manufacturing industry's efficiency, productivity, and product quality. It encompasses various innovations that have revolutionized how products are designed, produced, and distributed. Here are some key aspects of advanced manufacturing:
1. **Automation and Robotics**: Advanced manufacturing often involves the integration of automation and robotics to perform tasks that were traditionally done by human workers. This can lead to increased production speed, reduced errors, and improved workplace safety.
2. **Additive Manufacturing (3D Printing)**: Additive manufacturing, commonly known as 3D printing, allows for the creation of complex parts and prototypes by adding material layer by layer. It enables rapid prototyping, customization, and reduced material waste.
3. **Digital Twin Technology**: Digital twins are virtual representations of physical products or processes. They allow manufacturers to simulate and optimize the entire product lifecycle, from design and production to maintenance and performance analysis.
4. **Advanced Materials**: The development and use of advanced materials, such as composites, nanomaterials, and smart materials, can result in products with enhanced properties, such as strength, durability, and conductivity.
5. **Internet of Things (IoT)**: IoT involves connecting physical devices and equipment to the internet, enabling real-time data collection, monitoring, and analysis. In manufacturing, IoT can lead to predictive maintenance, better supply chain management, and improved operational efficiency.
6. **Artificial Intelligence (AI)**: AI technologies, including machine learning and predictive analytics, can help manufacturers make data-driven decisions, optimize processes, and identify patterns that might be difficult for humans to detect.
7. **Advanced Data Analytics**: Advanced manufacturing relies on data analytics to extract valuable insights from large datasets. This can lead to improved quality control, better demand forecasting, and optimized production processes.
8. **Lean Manufacturing and Continuous Improvement**: These principles focus on eliminating waste, improving efficiency, and constantly seeking ways to enhance processes. Technologies like AI and data analytics play a role in identifying areas for improvement.
9. **Sustainability and Circular Economy**: Advanced manufacturing techniques often incorporate sustainable practices, such as recycling and using environmentally friendly materials, to reduce the environmental impact of production.
10. **Collaborative Manufacturing**: Collaboration between humans and robots or between different manufacturers is becoming more common. This can involve co-robots working alongside human workers or different companies collaborating to create complex products.
11. **Flexible Manufacturing Systems**: Modern manufacturing systems are designed to be adaptable to changes in demand, enabling quick adjustments to production lines and product variations.
12. **Supply Chain Digitalization**: Digital tools can help optimize supply chain management, ensuring that raw materials and components are sourced efficiently and delivered on time.
Advanced manufacturing is transforming industries across the board, from aerospace and automotive to electronics and consumer goods. Its adoption can lead to improved product quality, reduced costs, increased innovation, and enhanced competitiveness on a global scale.