Complexity theory
MM Waldrop in his book, Complexity: the emerging science at the edge of order and chaos (1992) noted:
“…that corporations and industries evolve for better survival in a changing environment. And the marketplace responds to changing tastes and lifestyles, immigration, technological developments, shifts in the price of raw materials, and a host of other factors. Finally, every one of these complex, self-organising, adaptive systems possesses a kind of dynamism that makes them qualitatively different …… Complex systems are more spontaneous, more disorderly, ..[yet].. at the same time, however, their peculiar dynamism is also a far cry from the weirdly unpredictable gyrations known as chaos. These complex systems have somehow acquired the ability to bring order and chaos into a special kind of balance.”
Complexity theory arises between order and chaos.
“Complex systems tend to locate themselves at a place we call the edge of chaos. We imagine the edge as a place where there is enough innovation to keep a living system vibrant and enough stability to keep it from falling into anarchy. Only at the edge of chaos can a complex system flourish.” (Malcolm, 1995)
Research has shown that complexity is very similar to chaos theory (Decker, 2000; Flood, 1988) but that it requires a structured environment to exist. The majority of research (Ambos-spies, 1993) into complexity has followed on from chaos theory, but it is still an emergent theory with many unknowns. As a result, there is no standard definition.
Research on complex systems in biology (Phelan, 1995) has focused on the use of cellular automata. These models control single cells via a set of rules or by the state of their immediate neighbours. The Game of Life, a simple computer program that was popular among programmers in the early 1980’s, is a well-known form of cellular automata. (Wolfram, 1986; Hubler, 1986).
Complexity is well suited to specific physical or chemical applications (Lloyd, 1995; AppliedFutures, 1998) as they are very chaotic but are based solely around a well-structured environment. As an example of the potential application of chaos-based theoretical models, see Biomimicry.
The text in this article is based on ‘Business Management in Construction Enterprise’ by David Eaton and Roman Kotapski. The original manual was published in 2008. It was developed within the scope of the LdV program, project number: 2009-1-PL1-LEO05-05016 entitled “Common Learning Outcomes for European Managers in Construction”. It is reproduced here in a slightly modified form with the kind permission of the Chartered Institute of Building.
--CIOB
[edit] Find out more
[edit] Related articles on Designing Buildings Wiki
[edit] External references
- Waldrop, M.M.: Complexity: the emerging science at the edge of order and chaos, 1992.
Featured articles and news
Heritage on the edge?
Prioritising tax considerations.
Reviewing the Double Diamond Design model
The four D creative process: discover, define, develop and deliver.
National Cyber Security Centre initiative is announced.
The impact of COVID-19 on global HVAC&R markets
Reviewing trends and projections.
Legislation will establish initiatives to move towards net zero.
Status determination statement
How to document contractor employment status.
Social distancing goes high tech
Tech tools to help manage people and space post-pandemic.
Eclectic Edwardian architecture
A style that ranges from mock Tudor to arts and crafts to the 'Wrenaissance'.
Free guide from Secured by Design.
Building Back Better: Circularity
BREEAM strategy for sustainability and the circular economy.
Free tool to improve the construction programming process.
Building services verification
Are buildings doing what they're supposed to be doing?
Cities with quick access to everything by foot or bike.